- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于DSP/FPGA高精度测量系统中多电源可靠性设计
录入:edatop.com 点击:
由于高精度测量系统工作频率高,数据处理量大,功耗也相对较高,而供电系统的好坏直接影响到系统的稳定性和系统的精度,所以设计高效率、高可靠性的供电系统具有极其重要的现实意义。本文主要叙述了一个实际高精度测量系统的电源设计。
1 DSP和FPGA的电源要求
系统采用Altera公司的Cyclone系列EPIC12型号FPGA和TI公司的TMS320C6713B型号DSP均需要两种电源[1~2]:外围I/O电压为3.3V及内核电压分别为1.5V和1.2V。因此必须考虑它们的配合问题:(1)在加电过程中,要保证内核先得到供电,外围I/O后得到供电,内核最晚也应该与周边I/O接口电源同时加电。否则可能会导致DSP和FPGA的输出端出现大电流,这将大大影响器件的使用寿命,甚至损坏器件。(2)在关闭电源时,内核最晚也应当与周边I/O接口电源同时掉电,而且应该先关闭I/O接口电源,再关内核电源。本文主要利用TI公司的TPS5431×系列产品来产生1.2V、1.5V和3.3V电压[3]。
系统各个电源转换芯片统一由蓄电池供电。电源模块在用蓄电池加电时,其电压上升过程中与达到稳定状态前可能出现较严重的波动。而DSP和FPGA在上电过程中如果电压波动较大,加载可能失败并导致后续加载操作异常[4]。为了保证加载成功,不会产生不受控制的状态,所以在系统中加入了电压监控和复位电路,以确保DSP和FPGA芯片在系统加电过程中始终处于复位状态,直到电压达到所要求的电平。同时,一旦电源的电压降到阈值以下,强制芯片进入复位状态,确保系统稳定地工作。因为系统用6V蓄电池供电,所以电压不会超过6V,只需进行欠压监控[5]。
2 电源系统设计
系统中存在模拟电路和数字电路供电。本文重点介绍数字电路电源部分。
本设计采用TPS5431×系列电压转换芯片设计数字电源系统,分别产生DSP和PFGA的内核和外围电压以及+5V电压。TPS5431×系列是低电压输入、大电流输出的同步PWM Buck降压式电压转换器,其电路外围器件少,60mΩ的MOSFET开关管保证了在持续3A的输出电流时超过92%高效率,输出电压有0.9V、1.2V、1.5V、1.8V、2.5V、3.3V可选,初始误差为1%,PWM频率范围从280~700kHz,通过峰值电流限制和热关断实现过载
1 DSP和FPGA的电源要求
系统采用Altera公司的Cyclone系列EPIC12型号FPGA和TI公司的TMS320C6713B型号DSP均需要两种电源[1~2]:外围I/O电压为3.3V及内核电压分别为1.5V和1.2V。因此必须考虑它们的配合问题:(1)在加电过程中,要保证内核先得到供电,外围I/O后得到供电,内核最晚也应该与周边I/O接口电源同时加电。否则可能会导致DSP和FPGA的输出端出现大电流,这将大大影响器件的使用寿命,甚至损坏器件。(2)在关闭电源时,内核最晚也应当与周边I/O接口电源同时掉电,而且应该先关闭I/O接口电源,再关内核电源。本文主要利用TI公司的TPS5431×系列产品来产生1.2V、1.5V和3.3V电压[3]。
系统各个电源转换芯片统一由蓄电池供电。电源模块在用蓄电池加电时,其电压上升过程中与达到稳定状态前可能出现较严重的波动。而DSP和FPGA在上电过程中如果电压波动较大,加载可能失败并导致后续加载操作异常[4]。为了保证加载成功,不会产生不受控制的状态,所以在系统中加入了电压监控和复位电路,以确保DSP和FPGA芯片在系统加电过程中始终处于复位状态,直到电压达到所要求的电平。同时,一旦电源的电压降到阈值以下,强制芯片进入复位状态,确保系统稳定地工作。因为系统用6V蓄电池供电,所以电压不会超过6V,只需进行欠压监控[5]。
2 电源系统设计
系统中存在模拟电路和数字电路供电。本文重点介绍数字电路电源部分。
本设计采用TPS5431×系列电压转换芯片设计数字电源系统,分别产生DSP和PFGA的内核和外围电压以及+5V电压。TPS5431×系列是低电压输入、大电流输出的同步PWM Buck降压式电压转换器,其电路外围器件少,60mΩ的MOSFET开关管保证了在持续3A的输出电流时超过92%高效率,输出电压有0.9V、1.2V、1.5V、1.8V、2.5V、3.3V可选,初始误差为1%,PWM频率范围从280~700kHz,通过峰值电流限制和热关断实现过载
上一篇:C8051F005在高速误码测试系统中的运用
下一篇:多通道智能温湿度测试仪的研制