- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于CPLD的线阵CCD数据采集系统的开发
视频信号处理电路的结构框图如图3所示。
由TCD142D输出端OS输出的视频信号有以下特点:
*负极性信号
*包含有周期性的复位脉冲串扰
*有效信号幅值较小,约为500mV
CCD输出视频信号的上述特点决定了它不能够直接送入PC机进行软件处理,必须先从硬件上对其进行量化处理。模拟视频信号在进行A/D转换之前先要进行一系列的预处理,消除视频信号中的驱动脉冲(主要是复位脉冲)及噪声等所造成的干扰,将微弱的负极性视频信号反向、放大。在电路设计中,选用了一片AD8031运算放大器,将视频信号及其补偿输出分别送至差动放大器的反相和同相输出端,在进行视频信号放大的同时消除复位脉冲所造成的干扰,并将负极性视频信号转换成正极性。在AD8031的输出端接一级RC滤波器,进一步滤除噪声。经过上述处理后的视频信号被送入A/D转换器进行量化。在该数据采集卡的设计中,选用8位、高速、并行、半闪速结构ADC-TLC5510芯片完成A/D转换工作,其内部自带采样保持电路,这在一定程度上简化了外围电路的设计。只要设计合理,TLC5510的转换速率(最小为20MHz)完全可以满足CCD(1MHz)的工作要求。利用A/D转换技术将视频信号转换成与之对应的、能够反映图像灰度变化的数字量,提高了测量精度和分辨率,当TLC5510的输出使能有效时,就可以将A/D转换结果送至8位数据线上。在数据存储器(CY6264)写允许及地址有效的前提下,将8位A/D转换结果实时地存入数据存储器中。
2.4 I/O接口电路的设计
I/O接口电路的主要功能就是将数据采集卡与PC机有机地统一起来。在本系统中,采用16脚的插座作为两者之间的接口。两者的通讯主要包括:接收PC机发送的各种控制命令,发送数据采集卡的各种状态信号给PC机,接收PC机发送的数据采集卡积分时间设定命令,传输数据给PC机等。
3 数据采集系统软件的设计
数据采集系统的软件主要完成的功能有:①PC机与数据采集卡之间的通讯驱动,②CCD图像处理,实现最终的设计目的。
3.1 通讯驱动软件的设计[3]
数据采集卡的I/O接口与PC机的打印机并口相连接,通过通讯驱动软件的驱动,基于CPLD的线阵CCD数据采集卡可以直接接收来自PC机的控制命令,或将数据(或状态)经并口传入PC机,不需外加其它辅助电路。
该数据采集系统的通讯驱动软件是用C语言设计完成的,调用基本的并行接口操作函数。用户可以通过PC机并口完成如下工作:(1)将PC机发出的控制字写入可编程逻辑器件,控制CCD数据采集卡的工作状态,(2)将数据采集卡当前的状态字读入PC机,(3)判断数据采集卡工作状态位,在允许PC机读取数据的前提下读取外部数据存储器中的数据。因采用标准并行打印机适配器,所以一个字节的数据要分两次进行读取,先读低4位,再读高4位,然后将两部分合并,所得结果存入数据文件。通过I/O驱动软件控制,PC机可以改变和设定CCD当前的积分时间及CCD当前所处状态。
3.2数据处理软件的设计[4]
数据处理软件的主要目的就是设计恰当的算法,对图像信息进行处理,提取图像的边缘特征并以此为基础进行高层次的处理,如:特征描述、识别和理解。图像的边缘特征是图像信息最重要的特征,在对CCD图像进行处理时,首先要解决好图像的边缘问题。边缘定位精度将直接影响测量结果的精度。
传统的边缘检测算法是考察图像的每个象素在某个邻域内灰度的变化,利用边缘邻近一阶或二阶导数的变化规律来检测边缘。但利用这种方法进行数据处理时?由于受到CCD自身的制造工艺和工作原理的影响?其分辨率只能达到一个光敏元大小。故为了进一步提高CCD的测量精度和分辨率,选用了直线拟合最小二乘法来确定图像的边缘点。以图像边缘斜坡段梯度最大点为中心,对称地选取斜坡段的2n+1个点进行直线拟合,以此来提高整个CCD数据采集系统的测量精度。采用空间拟合法确定图像边缘点对于减小随机性测量误差是非常有利的。
4 数据采集系统的性能评价
在对数据采集系统软硬件设计和测试成功后,将该数据采集系统配以合适的光学成像系统,以直径为8.00mm(由千分尺测得)的卷烟标准棒为被测物,调整合适的积分时间和光照强度,对卷烟标准棒的直径进行了验证性测量。在同一段时间内对同一被测物进行了10次测量,其实验结果如图4所示。
实验结果表明,该数据采集系统的测量精度在0.05mm之内,变异系数不超过1%,说明该数据采集系统的测量精度高、重复性好。
本文摘自《电子技术应用》
CCD采集系统