- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
示波器探头基础入门指南(上)
在绝大多数示波器测量环境下,我们都需要使用探头。示波器探头有很多种,内部原理构造迥异,使用方法也各不相同。本文主要给大家介绍示波器探头的种类及工作原理,探头使用过程注意事项以及如何选择示波器探头。
1 示波器探头种类及工作原理
对于DC直流或一般低频信号而言,示波器探头只是一个由特定阻抗R所形成的一段传输线缆。而随着待测信号频率的增加和不规则性,示波器探头在测量过程中会引入寄生电容C以及电感L,寄生电容会衰减信号的高频成分,使信号的上升沿变缓。寄生电感则会与寄生电容一起构成谐振回路,使信号产生谐振现象。所有这些都会对我们测量信号的准确性带来挑战。

图1 探头电气特性示意图
示波器探头按供电方式分可分为无源探头和有源探头。无源探头又分为无源低压、无源高压及低阻传输线探头等,有源探头又分为有源单端、有源差分、高压差分探头等。此外,在一些特殊应用下,还会使用到电流探头(AC、DC)、近场探头、逻辑探头以及各类传感器(光、温度、振动)探头等。
无源探头是最常用的一类电压探头,也是我们在购买示波器时标配赠送的探头。如图2所示。

图2 无源探头示意图
无源探头一般使用通用型BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减。
图3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗Rprobe、寄生电容Cprobe、传输导线(一般1至1.5米左右)、可调补偿电容Ccomp组成。此类无源探头一般输入阻抗为10M ,衰减比因子为10:1。

图3无源探头原理图
在使用此类探头时,示波器的输入阻抗会自动设置为高阻1M 。此时示波器BNC通道输入点的电压Vscope与探头前端所探测的电压值Vprobe的关系满足以下对应关系:
Vprobe/Vscope = (9M + 1M ) / 1M = 10 : 1
由关系式可知,示波器得到的电压是探头探测到电压的十分之一,这也是无源探头10:1衰减因子的由来。无源探头具备高阻抗10M ,因此它对待测电路的负载效应(将在第二部分详述)很小,能覆盖一般低频频段(500MHz以内),耐压能力强(300V-400Vrms),价格便宜,通用性好,所以得到广泛使用。
当无源探头的衰减因子为100:1、1000:1甚至更高时,此类探头一般归类为无源高压探头。由于其衰减比很大,因此能测量高压、超高压电信号。

图4 R&S RT-ZH10高压探头
还有一类无源探头,其衰减比为1:1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。由于不像10:1衰减比探头那样信号需要示波器再放大10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。

图5 R&S HZ-154 1:1/10:1可调衰减比无源探头
无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持带宽更高,可达数GHz以上。图6为输入阻抗为500 的10:1无源传输线探头原理图:

图6传输线探头原理图
传输线探头具备低寄生电容,低输入阻抗的特性,一般用来测量高频信号。在使用传输线探头时应该注意将示波器输入阻抗设置为50 ,以与传输线50 阻抗相匹配,传输线探头的典型应用为测量50 传输线上的电信号,通过SMA-N等不同的转换接头,传输线探头也可用在频谱分析仪等其它测试设备上。 [p] [p] [p]
电流探头的原理如下,主要是利用电磁效应(AC测量)和霍尔效应(DC测量)。

图19 AC+DC电流探头原理图
当有AC电流经过导线穿过电流探头的前段闭合钳口时,会有相应磁场产生,通过磁场的强弱直接感应到电流探头的线圈。探头就象一个电流变压器,系统直接测量的是感应电流。
如果是DC或者低频电流,当电流钳闭合后,电流导线附近会出现一个磁场。磁场使霍尔传感器内的电子发生偏转,在霍尔传感器的输出产生一个电压。系统根据这个电压产生一个反相(补偿)电流至电流探头的线圈,使电流钳中的磁场为零,防止磁饱和。系统根据反相电流测得实际得电流值。
电流探头的选择主要依据其测量带宽、量程以及钳口直径等。
MSO数字逻辑探头在数字逻辑测试中会经常使用,与一般8bit模拟探头相比,数字逻辑探头根据示波器所设置的判决门线电平,将捕获的电压按照0、1跳变(1bit)的数字信号在屏幕上显示出来。用户可以根据多路数字信号的逻辑电平及关系来判断逻辑电路的性能。

图20 R&S RTO-B1数字逻辑探头
EMI近场探头是另一类特殊的探头类型,它实际使用了天线接收原理,用来捕获电路板上空间辐射的电磁场干扰,特别是在系统集成中做EMI电磁干扰的诊断。

图21 EMI近场探头示意图
除了以上给大家介绍的各种探头之外,还有光探头、温度传感探头及其他各类传感探头等。原则上来说,任何一款能够将各物理量转换成电压信号并具备与示波器互连能力的传感器都可以作为示波器探头,用户可以根据具体使用环境和需求选择适合的探头类型。
上一篇:你选择了最合适的示波器么?
下一篇:示波器实操特辑之4:冻结显示
闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤旇棄搴婇梺褰掑亰閸犳帡宕戦幘鎰佹僵妞ゆ劑鍨圭粊顕€姊洪棃娑欘棞闁稿﹤顭烽獮鎴﹀礋椤掑倻鎳濆銈嗙墬绾板秴鈻嶆繝鍥ㄢ拻濞撴埃鍋撴繛浣冲洦鏅煫鍥ㄧ☉閻掑灚銇勯幒鎴濐仼闁藉啰鍠栭弻鏇㈠醇濠垫劖效闂佺ǹ顑冮崝宥夊Φ閸曨垰鍐€闁靛⿵濡囧▓銈嗙節閳封偓閸曨剛顦伴梺鍝勭焿缂嶄線鐛Ο鍏煎枂闁告洦鍘归埀顒€锕娲偡閺夋寧些濡炪倖鍨甸ˇ鐢稿Υ娴e壊娼ㄩ柍褜鍓熼獮鍐閵堝懎绐涙繝鐢靛Т鐎氼厼鈻撻鍓х=闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勩€侀弽顓炵闁挎洍鍋撶紒鐙€鍨堕弻銊╂偆閸屾稑顏� | More...
闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤旇棄搴婇梺褰掑亰閸犳帡宕戦幘鎰佹僵妞ゆ劑鍨圭粊顕€姊洪棃娑欘棞闁稿﹤顭烽獮鎴﹀礋椤掑倻鎳濆銈嗙墬绾板秴鈻嶆繝鍥ㄢ拻濞撴埃鍋撴繛浣冲洦鏅煫鍥ㄧ☉閻掑灚銇勯幒鎴濐仼闁藉啰鍠栭弻鏇㈠醇濠垫劖效闂佺ǹ顑冮崝宥夊Φ閸曨垰鍐€闁靛鍎崑鎾诲冀椤愮喎浜炬慨妯煎亾鐎氾拷婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犲綊鏌嶉崫鍕櫣闁稿被鍔戦弻锝夊箛闂堟稑鈷掑┑鐐茬墔缁瑩寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐鐑芥嚄閸撲焦鍏滈柛顐f礀閻ょ偓绻濋棃娑卞剭闁逞屽厸閻掞妇鎹㈠┑瀣倞闁肩ǹ鐏氬▍鎾绘⒒娴e憡鍟炴繛璇х畵瀹曟粌鈽夐姀鈾€鎸冮梺鍛婃处閸忔稓鎹㈤崱娑欑厪闁割偅绻冮崳瑙勩亜韫囨挾鎽犲ǎ鍥э躬椤㈡洟顢楁担鍓蹭紦
闂傚倸鍊峰ù鍥敋瑜忛幑銏ゅ箛椤旇棄搴婇梺褰掑亰閸犳帡宕戦幘鎰佹僵妞ゆ劑鍨圭粊顕€姊洪棃娑欘棞闁稿﹤鐏濋悾閿嬬附缁嬪灝宓嗛梺缁樺姈椤旀牕危濞差亝鐓熼柣鏂挎憸閻苯顭胯椤ㄥ牓寮鈧獮鎺楀籍閳ь剟寮冲⿰鍫熺厵闁诡垱婢樿闂佺粯鎸鹃崰鎰板Φ閸曨垼鏁冩い鎰╁灩缁犺崵绱撴担鐤厡闁稿繑锕㈠濠氭晲婢舵ɑ鏅i梺缁樺姈缁佹挳骞愰崘顔解拺闁荤喐婢樺Σ缁樸亜閹存繍妯€闁绘侗鍣i獮瀣晝閳ь剛绮诲☉銏♀拻闁割偆鍠撻埊鏇㈡煕婵犲倿鍙勬慨濠勭帛閹峰懘鎼归獮搴撳亾婵犲洦鐓涢柛娑卞枤缁犵偤鏌曢崱鏇犲妽缂佺粯绻堝畷鍫曟嚋閸偅鐝﹂梻鍌欑閹测€趁洪敃鍌氬偍闁伙絽澶囬崑鎾愁潩椤撶偛鎽甸梺鍝勬湰閻╊垶鐛Ο渚富閻犲洩寮撴竟鏇㈡⒒娴e憡鎯堥柣顓烆樀楠炲繘鏁撻敓锟�
闂傚倸鍊搁崐椋庣矆娴h櫣绀婂┑鐘插€寸紓姘辨喐閺冨牄鈧線寮介鐐茶€垮┑锛勫仧缁垶寮悩缁樷拺闂侇偆鍋涢懟顖涙櫠椤斿浜滄い鎾跺仦閸嬨儳鈧娲滈幊鎾诲煡婢跺ň鏋庨柟閭﹀枛缁插潡姊婚崒娆戝妽闁诡喖鐖煎畷鎰板即閻忚缍婇幃婊堟寠婢跺矈鍞甸梺璇插嚱缂嶅棝宕伴弽顐や笉闁哄被鍎查悡娆徝归悡搴f憼婵炴嚪鍥ㄧ厵妞ゆ棁宕电粣鏃€鎱ㄦ繝鍛仩闁告牗鐗犲鎾偄閸濄儱绲垮┑锛勫亼閸婃垿宕硅ぐ鎺撴櫇妞ゅ繐鐗勯埀顑跨閳诲酣骞樺畷鍥舵Ч婵$偑鍊栭幐楣冨窗鎼淬劍鍋熷ù鐓庣摠閳锋垿鏌涘☉姗堟敾閻庡灚鐟╅弻宥堫檨闁告挾鍠庨锝嗙節濮橆厽娅㈤梺璺ㄥ櫐閹凤拷
婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸婂爼鏌涢鐘插姎闁汇倗鍋撶换婵嬫濞戝崬鍓伴梺鍛婅壘缂嶅﹪鐛弽銊︾秶闁告挆鍚锋垶绻濆▓鍨仩闁靛牊鎮傚濠氭偄閻戞ê鏋傞梺鍛婃处閸嬪嫯顤傞梻鍌欑閹诧繝宕洪崘顔肩;闁瑰墽绮悡鐔煎箹濞n剙鈧倕岣块幇鐗堢厵妞ゆ棁鍋愰崺锝団偓瑙勬礃濞茬喖鐛惔銊﹀癄濠㈣泛鑻獮鎺楁⒒娴gǹ鎮戠紒浣规尦瀵彃饪伴崼婵囪緢濠电姴锕ら悧濠囨偂閺囩喆浜滈柟鏉垮閹偐绱掗悩绛硅€块柡灞剧☉椤繈顢橀悩鍐叉珰闂備浇顕栭崰娑綖婢跺瞼绠旈柣鏃傚帶閻愬﹦鎲稿鍥╀笉闁荤喖鍋婂〒濠氭煏閸繂鏆欏┑锛勬櫕缁辨帡顢欐總绋垮及濡ょ姷鍋涢ˇ顖濈亙闂佸憡渚楅崰妤€鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚�