- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
测试测量关键基础之示波器(二)
1、什么叫纹波?
纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。
它主要有以下害处:
1.1.容易在用电器上产生谐波,而谐波会产生更多的危害;
1.2.降低了电源的效率;
1.3.较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;
1.4.会干扰数字电路的逻辑关系,影响其正常工作;
1.5.会带来噪音干扰,使图像设备、音响设备不能正常工作
2、纹波、纹波系数的表示方法
可以用有效值或峰值来表示,或者用绝对量、相对量来表示;
单位通常为:mV
一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量,即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。
3、纹波的测试方法
3.1.以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。
4、开关电源纹波的主要分类
开关电源输出纹波主要来源于五个方面:
4.1.输入低频纹波;
4.2.高频纹波;
4.3.寄生参数引起的共模纹波噪声;
4.4.功率器件开关过程中产生的超高频谐振噪声;
4.5.闭环调节控制引起的纹波噪声。
5、电源纹波测试
纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。
电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。
一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。
电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。
所用的仪器是:配有电压测量探头的TDS1012B示波器。
测量之前需要进行如下设置。
1.通道设置:
耦合:即通道耦合方式的选择。纹波是叠加在直流信号上的交流信号,所以,我们要测试纹波信号就可以去掉直流信号,直接测量所叠加的交流信号就好。
宽带限制:关
探头:首先选用电压探头的方式。然后选择探头的衰减比例。必须与实际所用探头的衰减比例保持一致,这样从示波器所读取数才是真实的数据。比如,所用电压探头放在×10档,则此时,这里的探头的选项也必须设置为×10档。
2.触发设置:
类型:边沿
信源:实际所选择的通道,如,准备用CH1通道进行测试,则此处就应该选择为CH1。
斜率:上升。
触发方式:如果是在实时地观察纹波信号,则选择‘自动’触发。示波器会自动跟随实际所测信号的变化,并显示。这个时候,你也可通过设置测量按钮,实时地显示你所需要的测量的数值。但是,如果你想要捕捉某次测量时的信号波形,则需要将触发方式设置为‘正常’触发。此时,还需要设置触发电平的大小。一般当你知道你所测量的信号峰值时,将触发电平设置为所测信号峰值的1/3处。如果不知道,则触发电平可以设置的稍微小一些。
耦合:直流或交流…,一般用交流耦合。
3.采样长度(秒/格):
采样长度的设置决定能否采样到所需要的数据。当所设置的采样长度过大时,就会漏掉实际信号中的高频成分;当所设置的采样长度过小时,就只能看到所测实际信号的局部,同样无法得到真实的实际信号。所以,在实际测量时,需来回旋转按钮,仔细观察,直到所显示波形是真实的完整的波形。
4.采样方式:
可根据实际需要设定。如,要求测量纹波的P-P值,则最好选择峰值测量法。采样次数也可根据实际需要设定,这与采样频率及采样长度有关。
5.测量:
通过选择对应通道的峰值测量,示波器就可以帮你把所需要的数据及时显示出来。同时也可以选择对应通道的频率、最大值、均方根值等。
通过对示波器进行合理设置和规范的操作,一定可以得到所需的纹波信号。但是,在测量过程中一定要注意防止其它信号对于示波器探头自身的干扰,以免所测量的信号不够真实。
通过电流信号测量法测量纹波值是指,测量叠加在直流电流信号上的交流纹波电流信号。对于纹波指标要求比较高的恒流源,即要求纹波比较小的恒流源,采用电流信号直接测量法可以得到更加真实纹波信号。与电压测量法不同的是,这里还用到了电流探头。比如,继续用上述的示波器,再加一个电流放大器和一个电流探头。此时,只需用电流探头夹住输出到负载的电流信号,就可以进行电流测量法来测量输出电流的纹波信号了。与电压测量法一样,整个测试过程中,示波器及电流放大器的设置是能否采样到真实信号的关键。
其实,用这种方法测量时,示波器的基本设置及用法与上述相同。不同的是,通道设置中探头的设置有所不同。在这里,需要选则电流探头的方式。然后,选择探头的比例,必须与放大器所设置的这个比例相同,这样从示波器所读取数才是真实的数据。比如,所用放大器的这个比例设置为5A/V,则此时示波器的这一项也需设置为5A/V。至于电流放大器的耦合方式,当示波器的通道耦合已经选择为交流耦合时,则这里选择交流或直流都可以。
需要注意的是,用这种方法时,需先打开示波器,然后再打开电流放大器。且,记得在使用前对电流探头先消磁。
另外,测量电源纹波本身有一定技巧性。图1给出了一个不当使用示波器测量电源纹波的实例。在这个例子中出现了几个错误,首先是使用了接地线很长的示波器探针;其二是让由探针和接地线形成的回路靠近功率变压器和开关元件;最后是允许在示波器探针和输出电容之间形成额外的电感。其结果带来的问题是在测得的纹波波形中携带了拾取的高频成分。 [p]
在电源中有许多很容易耦合到探针中的高速的、大电压和电流信号波形,其中包括来自功率变压器的磁场耦合、来自开关节点的电场耦合、以及由变压器交绕(interwinding)电容产生的共模电流。
图1:不当的纹波测量得到糟糕的结果。
采用正确的测量技术可切实改善纹波测量的结果。首先,通常会规定纹波的带宽上限,以避免拾取超出纹波带宽上限的高频噪声,应该给用于测量的示波器设定合适的带宽上限。其次,可以通过摘掉探针的“帽子”来去掉接地长引线形成的天线。如图2所示,我们把一段短线绕在探针接地引线周围,并使之与电源地相连接。这样做附带的好处是缩短暴露在电源附近高强度电磁辐射中的探针长度,从而进一步减少高频拾取。
最后,在隔离电源中,真正的共模电流是由在探针接地引线中流动的电流产生的,这就使得在电源地和示波器地之间产生电压降,表现为纹波。要抑制这个纹波,需要在电源设计中仔细考虑共模滤波问题。
此外,把把示波器引线绕在铁芯上可减小这个电流,因为这样会形成一个不影响差分电压测量、但可降低由共模电流产生的测量误差的共模电感。图2显示了采用改进测量技术对同一电路得到的纹波电压测量结果。可以看到,高频尖刺已几乎消除。
图2:四种简单改进极大地改善了测量结果。
事实上,当电源集成到系统中之后,电源纹波性能甚至会更好。在电源和系统其它部分之间几乎总会存在一定量的电感。电感可能是由导线或在印刷线路板上的蚀刻线形成的,而在芯片附近总会有作为电源负载的附加旁路电容,这两者形成低通滤波效应并进一步降低电源纹波和/或高频噪声。
举一个极端的例子,由电感量为15nH的长一英寸的短线和电容量10μF的旁路电容构成的滤波器,其截止频率为400kHz。该实例意味着能大幅减少高频噪声。该滤波器的截止频率比电源纹波频率低很多倍,可以切实降低纹波。聪明的工程师应该在测试过程中设法利用它。
二、示波器触发原理及有效使用方法
本文的目的在于帮助工程师了解触发的基本原理以及有效使用触发的策略。
什么是触发?
任何示波器的存储器都是有限的,因此所有示波器都必须使用触发。触发是示波器应该发现的用户感兴趣的事件。换句话说,它是用户想要在波形中寻找的东西。触发可以是一个事件(即波形中的问题),但不是所有的触发都是事件。触发实例包括边沿触发、毛刺信号触发和数字码型触发。
示波器必须使用触发的原因在于其存储器的容量有限。例如,Agilent 90000 系列示波器具有 20 亿采样的存储器深度。但是,即便拥有如此大容量的存储器,示波器仍需要一些事件来区分哪 20 亿个采样需要显示给用户。尽管 20 亿的采样听起来似乎非常庞大,但这仍不足以确保示波器存储器能够捕获到感兴趣的事件。
示波器的存储器可视为一个传送带。无论什么时候进行新的采样,采样都会存储到存储器中。存储器存满时,最旧的采样就会被删除,以便保存最新采样。当触发事件发生时,示波器就会捕获足够的采样,以将触发事件存储在存储器要求的位置(通常是在中间),然后将这些数据显示给用户。
重复采样模式与单次采样模式
过去,最常见的示波器运行模式是重复模式。这意味着一旦示波器触发并将数据显示给用户,它将立即开始搜索下一个触发事件。这就是示波器波形更新如此频繁的原因。
任何一款示波器要想进行触发并将数据显示给用户,都需要时间来重新准备触发。这个时间也称为“挂起时间”。在挂起时间内,示波器不能捕获任何波形。因此,挂起时间越短,错失的事件越少。例如,如果有一个毛刺信号恰巧在挂起时间内出现,那么它将不能在示波器的显示屏上显示。如果这个毛刺信号是一个罕见事件,则用户可能认为波形中没有毛刺信号,而事实上它却是存在的。因此,示波器的挂起时间越短,错失波形中重要事件的几率就越低。
表述此概念的另一种方法是“更新速率”,即每秒钟的波形数量。例如,Agilent 7000 系列示波器具有 100000 波形/秒的更新速率。
单次采样模式用于查找单一触发,而不会继续采集更多波形。因此,当用户想要查找某个事件,检查导致该事件的原因和事件发生后所出现的问题时,便可使用单次采样模式。这种模式对于分析不重复并且每次操作都会发生变化的波形尤其重要。
自动模式与触发模式
如果没有发生触发事件,将会出现什么情况呢?这一个非常好的问题。在这种情况下,屏幕上的波形将不会更新。这不是我们想要的情况,因为用户可能不知道如何改变触发来获得屏幕上的波形。例如,如果探头滑落,示波器将可能停止触发。不过,如果屏幕不能更新,信号丢失将很不明显。
为了解决这个问题,示波器拥有一个称为“自动(Auto)”触发的模式。在此模式下,如果在一段时间内无法找到触发,示波器将自动触发以更新屏幕。通常,示波器上有一些指示器(例如前面板上的 LED)来指示上一个触发是真实触发还是自动触发。这样,如果用户看到“自动(Auto)”指示器,他们就会知道所设置的触发没有发生。例如,如果用户设置的触发为毛刺信号,他们将会知道示波器没有检测出毛刺信号。
然而,当您回顾上一段的内容时就会发现,当自动触发发生时,它就意味着每次触发之后,示波器进行重新准备时具有挂起时间。为了完全避免这一时间,示波器应改为“触发(triggered)”模式。(这在某些示波器中称为“正常”模式)。在“触发(triggered)”模式中,除非发现触发事件,否则示波器将不会进行触发。因此,如果用户将触发模式设置为毛刺信号并且示波器一直没有进行触发,那么用户就可以确信毛刺信号没有发生(至少示波器能够检测出)。
三、示波器死区时间和波形捕获率对测量结果的影响
发展到今天,传统的模拟示波器已经渐渐淡出了人们的视野,数字示波器几乎已经取代模拟示波器成为硬件工程师手中电路调试的最常用的一种仪器设备了。你是否觉得示波器提供给了被测信号的所有信息呢?事实上,示波器在大部分时间都处在一个无法检测信号的无信号状态,通常把这段丢失信号的时间称为死区时间。
什么是死区时间
要想了解死区时间的来源,需要先对数字示波器的结构有一个基本的了解。数字示波器的典型组成框图如图1、图2所示。
图1:传统数字示波器组成框图。
图2:R&S公司RTO系列示波器组成框图。
被测信号通过输入通道进入示波器,并通过垂直系统中的衰减器和放大器加以调节。模数转换器(ADC)按照固定的时间间隔对信号进行采样,并将各个信号振幅转换成离散的数字值,称为“样本点”。采集模块随后则执行处理功能,例如样本抽取,默认一般都为采样模式。输出数据作为样本点(samples)存储在采集存储器中。存储的样点数目用户可以通过记录长度进行设置。 [p]
根据用户的需求,还可以对这些样本点进一步后处理。后处理任务包括算数功能(例如求平均值)、数学运算(例如FIR滤波)、自动测量(例如上升时间或下降时间)以及分析功能(例如直方图或模板测试)。其他后处理例如还包括协议解码、抖动分析和矢量信号分析等等。
对于数字示波器而言,基本上对波形样本执行的处理步骤没有任何限制。这些后处理功能或者使用软件通过该仪器的主处理程序执行,或者使用专用的ASIC或FPGA硬件执行,具体取决于示波器的结构。最终结果随后通过示波器的显示屏呈现给用户。
从图1和图2中可以看到R&S RTO系列示波器和传统数字示波器的在信号处理过程上的区别,它使用了专门独立开发的ASIC芯片RTC和FPGA来实现波形样本的后处理,如通道校准、样本抽取、数字滤波、math、直方图测量、模板测试以及FFT、自动测量、协议解码等等,大大降低了主处理器的工作负荷,同时在RTO芯片中用数字触发取代了模拟触发电路,消除了模拟触发电路带来的触发抖动,传统的中高端示波器为了减小这部分抖动,需要大量的DSP后处理。硬件结构上的创新,极大的缩短了RTO示波器波形样本后处理所耗费的时间。
示波器从信号采样捕获到波形样本的处理显示这一周期,称为捕获周期,在前一个捕获周期结束后,示波器才能够捕获下一个新波形。所以,数字示波器将捕获周期的大部分时间都用于对波形样本的后处理上,在这一处理过程中,示波器就处于无信号状态,无法继续监测被测信号。从根本上来说,死区时间就是数字示波器对波形样本后处理所需要的时间。
死区时间和捕获周期及波形捕获率关系
图3显示了一个波形捕获周期的示意图。捕获周期由有效捕获时间和死区时间周期组成。在有效捕获时间内,示波器按照用户设定波形样本数进行捕获,并将其写入采集存储器中。捕获的死区时间包含固定时间和可变时间两部分。固定时间具体取决于各个仪器的架构本身。可变时间则取决于处理所需的时间,它与设定的捕获样本数(记录长度)、水平刻度、采样率以及所选后处理功能(例如,插值、数学函数、测量和分析)多少都有直接关系。死区时间和捕获周期之比死区时间比也是示波器的一个重要特性,捕获周期的倒数就是波形捕获率。
图3:数字示波器的一个捕获周期。
例如,如果有效捕获时间是100ns(样本数为1k,采样率为10G),而死区时间是10ms,那么整个捕获周期所用的时间是10.0001ms。由此得到的死区时间比是99.999%,而波形捕获率是每秒不到100个波形。目前市场上大部分示波器在常规测量模式下面的波形捕获率都在几百次的量级,R&S公司最新的RTO系列示波器在同等条件下可以实现最高1,000,000次的波形捕获率,死区时间比可以降低到90%一下,远远要高出其他示波器。有些带宽≤1G的示波器在其最高采样率下,可以达到50,000次/秒的波形捕获率,其死区时间比也高达99.5%以上。
死区时间和波形捕获率对测量结果的影响
很多工程师在硬件调试过程中可能遇会到过这样的情形:在调试的后期阶段,电路板主要器件的焊接基本完成,在进行功能验证过程中,发现系统一运行没多久就会出故障,但是通过示波器查看关键的时钟和使能信号都“没有问题”,最终将故障原因定为在软件原因,然后逐行检查代码,进行软件优化。现在已经对示波器的死区时间已经有了清晰的认识,对于上面的情形还有一种可能就是示波器漏掉了导致系统故障的偶发信号,图4可以很形象的说明这一问题:
图4:示波器死区时间导致丢失关键偶发信号。
由于示波器死区时间的存在,导致示波器可能漏掉关键的异常信号,而给用户显示一个带有欺骗性的结果,最终误导用户的判断,会大大延长调试时间,降低调试效率。
根据公式1,如果波形捕获时间(即,样本数×分辨率,或10×水平刻度)、波形捕获率和信号事件发生速率(例如脉冲干扰的重复速率)均已确定,那么增加测量时间,会加大捕获并显示信号事件的概率:
公式 1:
P:捕获偶发重复信号事件的概率[单位是%]
GlitchRate:信号故障频率(例如,重复脉冲干扰)[单位是1/s]
T:有效捕获时间或波形显示时间(记录长度/采样速率,或记录长度×分辨率,或10×时间量程/格)[单位是s]
AcqRate:波形捕获率[单位是wfms/s]
Tmeasure:测量时间[单位是s]
如果知道概率,对公式1进行变换,可以计算捕获该偶发信号所需时间:
公式2:
假定某个信号带一个有每秒重复10次的异常。该信号本身以数据形式显示在示波器上,所采用的水平刻度为10ns/div。如果所用显示屏有10个水平格,则可以计算100ns的有效捕获时间。为了确保捕获所需信号事件的置信度较高,需要使用99.9%的概率。现在,所需的测试时间取决于示波器的波形捕获率。下表统计了几种不同的波形捕获率所对应的所需测试时间。
表1:在概率为99.9%(T=100ns,GlitchRate=10/s)的条件下,捕获重复异常信号所需时间。
虽然R&S的RTO系列示波器在该条件下的死区时间比还有接近90%左右,但是相比于其他死去时间比在99.5%以上的示波器,其发现偶发异常信号能力确是成数量级的上升,可以帮助工程师极大的提高调试效率。试问:有几位工程师在检查每一个信号时可以在示波器上看超过7秒钟时间呢?
前面也提到,波形捕获率和水平刻度、记录长度、采样率的设置都有关系,在实际测量中,如何根据实际的被测信号在这些参数设置中找到一个平衡点,以最高的捕获概率查看波形,提高调试效率,这是工程师在数字示波器使用过程中需要考虑的问题,这一部分会在以后文章中专门讨论。
四、简述两种示波器测量眼图的差别
简述两种示波器测量眼图的差别
中心议题:
力科示波器进行眼图测量
新旧两款软件包使用方法不同
力科示波器捕获了50MS的数据,并一次性地对所有这些数据进行眼图测量,得到了18.73449M个比特位(UI)的眼图。如下图所示。 [p]
XXK的示波器捕获了574996个比特位(UI),但一次只能对这些UI中的8000个UI做眼图测量。如下图显示了“UIs:8000:574996,Total:8000:574966 ”。 如何才能对捕获到的所有的数据做眼图呢? 这是个问题。
如果您在使用的是XXK的老软件包RT-EYE,那么您需要在C:下的某个文件夹中找到某个tdsrt-eye文件进行手工修改,去掉这个限制,但在去掉之后如果您捕获数据超过5Mpts会容易死机。 如果您是在用XXK示波器新的DPOJET软件包,那么需要在”Analyze”菜单下的“Perferences setup”子菜单的又一个子菜单“Measurement”的的某个子选项中找到设置。 不是XXK示波器发烧友似乎是找不到的呵!
上一篇:示波器实现高速全方位分析
下一篇:工程师须知:二手示波器的购买评估