• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 基于高吞吐率WLR测试的 ACS集成测试系统

基于高吞吐率WLR测试的 ACS集成测试系统

录入:edatop.com    点击:

引言

随着器件继续小型化,半导体器件可 靠性测试以及器件寿命预测面临极大挑战。由于新材料和新工艺的复杂性增大,器件 失效的随机性也在增加。1 这需要产生更 大的统计样本测试数据。虽然传统的应力 -开关-测量可靠性测试技术能实现庞大数 量的器件测试,但这种方法可能存在问题。使用TDDB,工程师需要监测软击穿和渐进 式击穿。采用NBTI,必须最小化器件弛豫并以极快的速度完成测量。在测试单个器 件的层面上,某些问题还是可控的,但在 实际时间段内顺序测试单个器件不能提供 大量的统计样本数据。

1. 采用SMU-per-pin(每管脚SMU)架构的ACS集成 测试系统举例

此应用笔记讨论了如何克服ACS集成 测试系统和SMU(源-测量单元)-per-pin 配置条件下的可靠性测试挑战。使用吉时 利2600系列源表和自动特性分析套件(ACS) 软件,可以针对越来越复杂的测试(例如 TDDB、NBTI和HCI)实现中等规模系统(20 ~40引脚)。由于ACS中含有全自动探测器 控制和自动测试序列功能,因而可以实现 高吞吐量测试。去除开关后,SMU-per-pin 配置在提供系统灵活性和易用性方面还起到 了重要作用。此外,ACS提供了集成测试流 环境、方便的点-击操作,而且包含常规可 靠性测试,例如: • TDDB、Vramp、JRamp(JEDEC标准测试) • HCI(NBTI)、即时NBTI、NBTI快速SMU • EM、等温EM(JEDEC标准测试) 用户可以利用标准库的模块作为模板, 用ACS快速开发自用测试。图2示出了用ACS 进行TDDB测试的例子。

图2. 在ACS图形用户界面进行TDDB测试设置的例子

SMU-Per-Pin WLR测试

SMU-per-pin的理念非常简单——从系 统架构中去掉开关矩阵并用独立SMU代替漏 掉的引脚连接。用创新的TSP-LinkTM 将几 台2600系列仪器连起来像一台仪器那样工 作。为了更好地理解SMU-per-pin架构的优 点,请考虑下面两种情况。 • 测试共用引脚结构 • 同时测试几个器件的可靠性

共用衬垫/引脚测试结构

考虑图3的共用引脚器件。4个MOSFET 共用栅极和衬底引脚连接,而且每个MOSFET 的漏极和源极引脚单独连接。共用SMU配置 可以使用4台SMU和一个开关矩阵顺序测试器件。将结构划分为几个较小的设备后,测试 时间因开关而延长了。此外,劣化恢复出现 在大多数可靠性测试的开关过程中,从而使 测量的劣化和接下来的寿命预测出现变化。在此情况下的共用SMU架构存在另一个 缺点。在测量一个器件时,剩余器件受栅极 电压变化的影响。这会给栅极应力带来不应有的变化。SMU-per-pin架构具有消除开关 延时、实现并行测试的显著优点,这无需驱 动每个结构的栅极。

TDDB和NBTI

图4示出了多器件TDDB测试结构的共用 SMU和SMU-per-pin配置。在开关(共用SMU) 情况下,SMU1提供连续应力至测试序列的全 部结构,SMU2顺序测量每个器件。在顺序分 析结构的过程中,开关延时和有限的测量速 度合在一起会限制每个结构的测量速度。因 此,必须分析这些延时并折合至寿命分析以保证准确推测寿命。而且,如果一个结构遭 受灾难性的故障,本组的其它结构将遭受电 压瞬变、暂时失去应力条件并可能使测量结 果不准确。SMU-per-pin架构不受开关延时 和结构不良连接的影响,但更重要的是测量 速度非常快,这对于采集高速渐进击穿现象 而言至关重要。 [p]

图4. 使用左半部的共用SMU架构以及右半部的SMU-per-pin 架构进行TDDB测试。

NBTI测试面临不同的问题。NBTI测试 结构是一个MOSFET,其中在栅极施加应力 并在漏极进行测量,源极和衬底接地。由 于劣化恢复问题,NBTI要求极高的测量速 度。特性分析带来的应力中断时间应尽量 短。测量速度越快,劣化测量的准确度越 高。2 很明显,共用SMU系统在应力和测量 周期之间引入了延时,并在特性分析之间 的应力持续期带来了可变性。即便使用可 能造成损害的热开关技术3,也必须测量应 力周期长度的变化并在寿命分析过程中加 以考虑。

并行测试和多个组 并行测试提高了测试仪和探测器的利 用率并通过同时测量多个器件提高了吞吐 量。所提高的吞吐量相对标准可靠性测试而言可能是图5所示顺序测试流的好几倍。

对于仅包含应力-测量序列的简单测试 而言,采用共用SMU方法能以更快速的源、 更短的建立延时和更高的积分速率缩短测 试时间。但这样做付出的昂贵代价是测量 误差升高。另一种并行测试方法可以在先 前测试一个器件的时间内提供4个器件的 测试结果。当然,这假定了测试时间比开 销(例如,探测器移动)时间长得多。增 加被测器件的数量,尤其在时间较长的可 靠性测试中,能节省大量时间并得到更多 的统计数据样本。

图5. 在顺序测试与并行测试之间的时间差

并行SMU-per-pin ACS集成测试系统的实现

使用多个GPIB组的2600系列源表实现 ACS集成测试系统的并行测试。通常使用4 个SMU(2台2600系列仪器)一组来测量4 端FET或4个电容器。组内的2600系列仪器 用TSP-LinkTM 连接起来作为一台仪器那样进行控制。此方法实现了系统可扩展性而且简化了ACS内的测试管理。因此,可以 建立多组SMU-per-pin测试系统。 对于并行测试而言,测试脚本预装载 至每台2600主机并保存在它的存储器内。 触发后,控制器将启动一个函数调用每个 组的主机,主机将运行脚本来协调其它 2600仪器。然后,此控制器扫描总线并 接收来自2600主机的测试结果。

图6. 采用GPIB和TSP-Link连接的多组2600系列仪器设置示例。每组在相同时间开始运行(相同或不同的)脚本。

结论

面市时间延长和测试成本压力增大意 味着测试工程师必须用更少的投入做更多的事。利用吉时利久经验证的仪器和测量, ACS集成测试系统填补了基于交互式实验 室工具与高吞吐量生产测试工具之间的空白。 图1所示的ACS系统表示了一种SMU-per -pin配置,这对于缩微CMOS可靠性测试非 常有利。工程师使用此系统就拥有了极大的系统灵活性和吞吐量,不仅能提供数量 巨大的统计数据,还实现了性能卓越的独 立器件测量。

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:基于HARQ的TD-LTE基站性能测试技巧
下一篇:LIV测试系统的组成

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图