- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
用示波器测量时间
实验简介
示波器是利用示波管内电子束在电场或磁场中的偏转,显示随时间变化的电信号的一种观测仪器。它不仅可以定性观察电路(或元件)的动态过程,而且还可以定量测量各种电学量,如电压、周期、波形的宽度及上升、下降时间等。还可以用作其他显示设备,如晶体管特性曲线、雷达信号等。配上各种传感器,还可以用于各种非电量测量,如压力、声光信号、生物体的物理量(心电、脑电、血压)等。自1931年美国研制出第一台示波器至今已有70年,它在各个研究领域都取得了广泛的应用,示波器本身也发展成为多种类型,如慢扫描示波器、各种频率范围的示波器、取样示波器、记忆示波器等,已成为科学研究、实验教学、医药卫生、电工电子和仪器仪表等各个研究领域和行业最常用的仪器。
实验原理
示波器的结构如图1所示,
由示波管(又称阴极射线管)、放大系统、衰减系统、扫描和同步系统及电源等部分组成。
为了适应多种量程,对于不同大小的信号,经衰减器分压后,得到大小相同的信号,经过放大器后产生大约20V左右电压送至示波管的偏转板。
示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内,结构如图2所示。电子枪是示波管的核心部分,由阴极、栅极和阳极组成。
图2 示波管的结构
(1)阴极――阴极射线源:由灯丝(F)和阴极(K)构成,阴极表面涂有脱出功较低的钡、锶氧化物。灯丝通电后,阴极被加热,大量的电子从阴极表面逸出,在真空中自由运动从而实现电子发射。
(2)栅极――辉度控制:由第一栅极G1( 又称控制极)和第二栅极G2(又称加速极)构成。栅极是由一个顶部有小孔的金属圆筒,它的电极低于阴极,具有反推电子作用,只有少量的电子能通过栅极。调节栅极电压可控制通过栅极的电子束强弱,从而实现辉度调节。在G1的控制下,只有少量电子通过栅极,G2与A2相连,所加相位比A1高,G2的正电位对阴极发射的电子奔向荧光屏起加速作用。
(3)第一阳极――聚焦:第一阳极(A1)程圆柱形(或圆形),有好几个间壁,第一阳极上加有几百伏的电压,形成一个聚焦的电场。当电子束通过此聚焦电场时,在电场力的作用下,电子汇合于一点,结果在荧光屏上得到一个又小又亮的光电,调节加在A1上的电压可达到聚焦的目的。
(4)第二阳极――电子的加速:第二阳极(A2)上加有1000V以上的电压。聚焦后的电子经过这个高电压场的加速获得足够的能量,使其成为一束高速的电子流。这些能量很大的电子打在荧光屏上可引起荧光物质发光。能量越大就越亮,但不能太大,否则将因发光强度过大导致烧坏荧光屏。一般来说,A2上的电压在1500V左右即可。
(5)偏转板:由两对相互垂直的金属板构成,在两对金属板上分别加以直流电压以控制电子束的位置。适当调节这个电压可以把光点或波形移到荧光屏的中间部位。偏转板除了直流电压外,还有待测物理量的信号电压,在信号电压的作用下,光点将随信号电压变化而变化,形成一个反映信号电压的波形。
(6)荧光屏:荧光屏(P)上面涂有硅酸锌、钨酸镉、钨酸钙等磷光物质,能在高能电子轰击下发光。辉光的强度取决于电子的能量和数量。在电子射线停止作用前,磷光要经过一段时间才熄灭,这个时间称为余辉时间。余辉使我们能在屏上观察到光电的连续轨迹。
自阴极发射的电子束,经过第一栅极(G1)、第二栅极(G2)、第一阳极(A1)、第二阳极(A2)的加速和聚焦后,形成一个细电子束。垂直偏转板(常称作y轴)及水平偏转板(常称x轴)所形成的二维电场,使电子束发生位移,位移的大小与x、y偏转板上所加的电压有关:
式(1)
中的Sy和Dy为y轴偏转板的偏转灵敏度和偏转因数,Sx和Dx为x轴偏转板的偏转灵敏度和偏转因数。它们均与偏转板的参数有关,是示波器的主要技术指标之一。
由式(1),y轴或x轴的位移与所加电压有关。如图3所示,在x轴偏转板上加一个随时间t按一定比例增加的电压Vx,光点从A点到B点移动。如果光点到达B点后,Vx降为零(图中坐标轴上的Tx点),那么光点就返回到A点。若此后Vx再按上述规律变化(Vx与Tx相同),光点会重新由A移动到B。这样Vx周期性变化( 锯齿波),并且由于发光物质的特性使光迹有一定的保留时间,于是就得到一条“扫描线”,称为时间基线。
图3 波形显示原理
如果在x轴加有锯齿形扫描电压的同时,在y轴上加一正弦变化的电压[如图(3)b],则电子束受到水平电场和垂直电场的共同作用而呈现二维图形。为得到可观测的图形,必须使电子束的偏转多次重叠出现,即重复扫描。
很明显,为得到清洗稳定的波形,上述扫描电压的周期Tx (或频率fx)与被测信号的周期Ty(或fy)必须满足:
以保证Tx轴的起点始终与y轴周期信号固定一点想对应(称“同步”),波形才稳定,否则波形就不稳定而无法观测。
由于扫描电压发生器的扫描频率fx不会很稳定,因此为保证式(2)
始终成立,示波器需要设置扫描电压同步电路,即触发电路,如图(1)所示。利用它提供一种触发信号来使扫描电压频率与外加信号同步,从而获得稳定的信号图形。图1中设置了三种同步触发方式:外信号触发、被测信号触发(内触发)、50Hz市电触发。
实际使用的示波器由于用途不同,它的示波管及放大电路等也不尽相同。因此示波器有一系列的技术特性指标,如输入阻抗、频带宽度、余辉时间、扫描电压线性度、y轴和x轴范围等。
在实验中或工程技术上都经常用示波器来测量信号的时间参数,如信号的周期或频率,信号波形的宽度、上升时间或下降时间,信号的占空比(宽度/周期)等。如雷达通过测量发射脉冲与反射(接受)脉冲信号的时间差来实现测距离,其他无线电测距、声纳测潜艇位置等都属于这一原理。
从式(2)触发,设待测信号接y轴输入端,则Ty是待测信号的周期,Tx是x轴扫描信号的周期,N是一个扫描周期内所显示的待测信号的波形周期数。如荧光屏上显示2个信号波形,扫描信号周期是10ms,则待测信号的周期是5ms。
X轴扫描信号的周期实际上是以时基单位(时间/cm)来标示的,一般示波管荧光屏的直径以10cm居多,则式(2)的Tx,由时基乘上10cm,如时基为0.1ms/cm,则扫描信号的周期为1ms。为此在实际测量中,将式(2)改成(3)的形式
Ty = 时基单位×波形厘米数
式中的波形厘米数,可以是信号一个周期的读数(可测待测信号的周期)、正脉冲(或负脉冲)的信号宽度的读数或待测信号波形的其他参数。
如果将不同的信号分别输入y轴和x轴的输入端,当两个信号的频率满足一定关系时,荧光屏上会显示出李萨如图形。可用测李萨如图形的相位参数或波形的切点数来测量时间参数。
两个互相垂直的振动(有相同的自变量)的合成为李萨如图形。
1.频率相同而振幅和相位不同时,两正交正弦电压的合成图形。设此两正弦电压分别为:
消去自变量t,得到轨迹方程:
这是一个椭圆方程。当两个正交电压的相位差φ取0~2π的不同值时,合成的图形如图4所示。
图4 不同φ的李萨如图形
2.两正交正弦电压的相位差一定,频率比为一个有理数时,合成的图形为一条稳定的闭合曲线。图5是几种频率比时的图形,频率比与图形的切点数之间有下列关系:
图5 不同频率比的李萨如图形
学习重点
实验仪器
函数信号发生器2台, 通用示波器1台。
实验内容
l
l
l
l
用两台信号发生器(一台自用,一台为公用)分别接y轴和x轴,取fx/fy =1、1/2、2、2/3、3/4时,测出对应的fx和fy,画出有关图形并求出公用信号的频率。
设计性内容
注意事项
观察李萨如图形时,通过自用信号发生器的频率微调旋钮,使李萨如图形尽可能稳定时,再测量y轴和x轴的切点数。
思考题