• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 示波器 > 示波器那些事儿--之测量参数

示波器那些事儿--之测量参数

录入:edatop.com    点击:
数字示波器具有很多测量参数,如上升时间、下降时间、峰峰值、幅值等。每种参数的含义在示波器的操作手册上一般都有说明。但是,如果深究每个参数底层算法的源头是什么,答案其实并不简单。如果能深刻理解示波器的基本算法,这会有助于我们理解使用示波器过程中遇到的诸如示波器测量频率为什么测不准?示波器测量不规则的信号测量上升时间为什么跳变范围很大?为什么光标测量结果和参数测量结果差别很大?等等一些问题。

●确定高电平和低电平是示波器垂直量测量的第一算法

峰-峰值表示所有采样样本中的最大样本值减去最小样本值,这好理解,在示波器算法中也好实现;而幅值表示被测信号“高电平”减去“低电平”。高电平和低电平分别在哪里?这就需要定义算法。这个算法的确定将不只是直接影响到“幅值”这个参数值,还将影响到绝大多数水平轴的参数值,如上升时间、下降时间、宽度、周期等,因为水平轴的参数要依赖于垂直轴的参数。

不同示波器厂商给出的“高电平”和“低电平”算法可能不尽相同,但一般会采用公认的IEEE定义的算法,如下图所示。

首先对图示中“LEFT CURSOR”(左光标)和“RIGHT CURSOR”(右光标)时间范围内的波形数据样本向垂直方向做“轨迹直方图”,从图中看上去,轨迹直方图的垂直方向和原始波形的各采样点在垂直方向的位置一一对应,水平方向则表示在各位置上采集到的数据样本点的个数。图例中有两个位置的数据样本出现的概率最高,这两个位置就分别被确定为“高电平(图示中表示top的位置)”和“低电平(图示中表示base的位置)”。

在示波器算法中,一般默认是根据屏幕最左边到最右边的全部波形数据来确定“高电平”和“低电平”,因此,示波器每捕获一次,仅能得到一个“高电平”和一个“低电平”的参数值。

在测量正弦波时,在采样率足够的情况下,示波器上捕获尽可能多的波形,测量得到的高电平和低电平更稳定、更准确,相应由之影响的水平轴参数上升时间、下降时间、周期、频率等也就更准确。对于正弦波测量,还可利用正弦插值或等效采样模式来提高待分析的样本数,测量得到的结果可能也会更准确。

在测量一个脉冲方波和测量多个脉冲方波得到的“高电平”和“低电平”的结果可能是不一样的,因为统计的样本数不一样,获得的“轨迹直方图”就会有些差异。如果信号上有一点点的过冲或下冲就可能影响到直方图分布的最大概率状态的确定,那么很多参数测量的结果都会受到影响。

●确定波形中任意一电压阈值和波形交叉点对应的时间轴的位置是示波器水平量测量的第一算法

水平方向上常见的测量参数如上升时间定义为幅值的10%-90%。在具体算法上,就是先根据上述的垂直量第一算法,先确定高电平和低电平从而得到幅值,再由幅值的10%得到对应的电压阈值和幅值的90%得到另外一个电压阈值,计算两个电压阈值和波形交叉点对应的水平位置之间的时间差就是上升时间。

怎么确定某个电压阈值和波形交叉位置处对应的时间轴的位置?一种比较简单的算法是,在电压阈值处划一条线,以这条线和波形相交处最接近的那个采样点对应的时刻作为时间轴的位置。但是,这种算法带来的误差可能会很大,特别是在上升沿一般只包括了几个数据样本点,采样率不是特别高的情况下。

另外一种算法如下图所示,在电压阈值和波形交叉处相邻的两个采样点之间进行立方插值,然后连接最接近交叉点的上、下两个插值点或采样点,根据这两个确定的点可以获得y=ax+b这个二元一次方程的a和b,然后再根据交叉点已知的电压阈值获得x,即获得了水平轴对应的位置。这种看起来比较复杂的算法误差显然会小于前一种,但仍然会存在误差,误差的大小和采样率大小及示波器本身的时基稳定性有关。

电压阈值是由幅值决定的,譬如周期表示上升沿50%到相邻上升沿50%之间的时间间隔,上升沿的50%这个电压阈值就是由幅值得来的。因此,垂直量的算法会对水平量的参数结果产生影响。

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:示波器有两种方法可以看电路的幅频响应特性
下一篇:选择示波器要注意哪些方面

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图