- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
智能化超声波探测船体结构焊缝的方法探讨
录入:edatop.com 点击:
1引言
为了保证船体建造质量,对船体焊缝必须进行探伤[1]。超声波探伤是船体结构焊缝检测常用的无损探伤方法。但是超声波探伤也有缺点。首先,由探伤人员填写的探伤记录,不象射线探伤那样能够留下较为客观原始的探伤凭证,这对于船厂的质量管理及质量保证体系来说,是明显的缺憾;特别是在船体结构出现破损事故时,超声波检测结果不能对事故原因分析起到应有的作用。其次,超声波探伤的结果不直观,无法准确确定焊接缺陷的性质、数量、尺寸、形状、位置等,不能为焊接缺陷的确诊、修复提供明确的依据。超声波探伤往往只能成为射线探伤的一种前导性或辅助性探伤手段,也就是说在工程实际应用中,一般先进行超声波探伤,超声波探伤认为有问题的部位,再进行射线探伤,这一点在船舶建造过程中显得尤为突出。最后,超声波探伤对操作人员的技术、素质要求较高。大量的焊缝、长时间的工作极有可能使探伤人员在探伤过程中造成误判、漏判[2]。这与国外强调焊接生产及探伤的全自动化、低成本化、技能化、过程的集约化以及产品的高可靠性、高安全性是完全相悖的。克服和解决超声波探伤的缺点,提高超声波探伤结果的可追溯性、可靠性、直观性以及提高工作效率、降低探伤成本和改善工作环境,成为超声波探伤技术发展的必然趋势[3]。本文在利用计算机控制技术的基础上,提出智能化超声波探伤系统。
2系统原理
计算机捕捉表面反射脉冲、底面反射脉冲、二次反射脉冲。当缺陷反射脉冲出现时,可根据缺陷反射脉冲与底面反射脉冲和二次反射脉冲之间的相对位置、以及捕捉到缺陷的探头的位置即声程,确定缺陷在该剖面上的位置。由于探头无需在垂直于焊缝的方向上移动,只需做匀速直线运动,在捕捉到各个剖面上的缺陷之后,计算机可以通过对各个剖面上的缺陷影像进行集成即可确定缺陷性质、数量、尺寸、形状、位置等缺陷要素,同时形成了超声波探伤的原始记录。从而实现了超声波探头与焊缝的相对运动、缺陷的捕捉、过程存储的自动化,以及缺陷判别的智能化。 [p]
阵列式超声波探伤的一个缺点是可能忽视微小的焊接缺陷,即探伤的精度有一定的限制。这主要是由于用阵列式探头取代单探头的横向运动,从而使超声波对焊缝金属的连续扫描变为离散扫描,超声波束离散扫描的间距就为超声波探伤对缺陷的最大分辨率。为了提高分辨率,可通过降低超声波探头尺寸的方式,使一定尺寸范围内尽可能多地布置探头。当由于超声波探头尺寸的限制而无法提高分辨率时,可采用复排阵列式超声波探头,可成倍提高分辨率,如图3所示。 3系统实现
智能化超声波探伤系统组成如图4所示。阵列式超声波探头采用分时工作方式,计算机通过超声波探头选通信号确定某个探头处于工作状态,同时对超声波探头驱动电路发出允许发射信号,超声波探头驱动电路使被选通的探头发射超声波,该探头接收到回波信号经放大传回到计算机,计算机即可显示焊缝处某个深度上是否有缺陷。通过每一个探头的轮流工作,即可知道该剖面焊缝上是否有缺陷,如果有缺陷,则缺陷的起始深度和终止深度即可被确定。
参考文献
1赵思连 .船舶焊接缺陷及其检验 .武汉造船, 2001(3)
2何汇 .常规超声波检测技术初步 .无损探伤, 2001(6)
3曾祥照 .无损检测文化概论 .无损探伤, 2002(2)
4孙宗泰 .工业超探中的图像检测与波形检测.无损探伤, 2002(4)
5杨文华 .三峡点站排沙钢管超声波检测 .无损探伤,2002(3)
6崔大海 .焊接桥梁的超声波探伤 .无损探伤, 2002(5)
7郑中兴,孙岳宗,宁志刚等 .输气管线对接环缝的超声(end)
为了保证船体建造质量,对船体焊缝必须进行探伤[1]。超声波探伤是船体结构焊缝检测常用的无损探伤方法。但是超声波探伤也有缺点。首先,由探伤人员填写的探伤记录,不象射线探伤那样能够留下较为客观原始的探伤凭证,这对于船厂的质量管理及质量保证体系来说,是明显的缺憾;特别是在船体结构出现破损事故时,超声波检测结果不能对事故原因分析起到应有的作用。其次,超声波探伤的结果不直观,无法准确确定焊接缺陷的性质、数量、尺寸、形状、位置等,不能为焊接缺陷的确诊、修复提供明确的依据。超声波探伤往往只能成为射线探伤的一种前导性或辅助性探伤手段,也就是说在工程实际应用中,一般先进行超声波探伤,超声波探伤认为有问题的部位,再进行射线探伤,这一点在船舶建造过程中显得尤为突出。最后,超声波探伤对操作人员的技术、素质要求较高。大量的焊缝、长时间的工作极有可能使探伤人员在探伤过程中造成误判、漏判[2]。这与国外强调焊接生产及探伤的全自动化、低成本化、技能化、过程的集约化以及产品的高可靠性、高安全性是完全相悖的。克服和解决超声波探伤的缺点,提高超声波探伤结果的可追溯性、可靠性、直观性以及提高工作效率、降低探伤成本和改善工作环境,成为超声波探伤技术发展的必然趋势[3]。本文在利用计算机控制技术的基础上,提出智能化超声波探伤系统。
2系统原理
图1 超声波探伤原理
图2
计算机捕捉表面反射脉冲、底面反射脉冲、二次反射脉冲。当缺陷反射脉冲出现时,可根据缺陷反射脉冲与底面反射脉冲和二次反射脉冲之间的相对位置、以及捕捉到缺陷的探头的位置即声程,确定缺陷在该剖面上的位置。由于探头无需在垂直于焊缝的方向上移动,只需做匀速直线运动,在捕捉到各个剖面上的缺陷之后,计算机可以通过对各个剖面上的缺陷影像进行集成即可确定缺陷性质、数量、尺寸、形状、位置等缺陷要素,同时形成了超声波探伤的原始记录。从而实现了超声波探头与焊缝的相对运动、缺陷的捕捉、过程存储的自动化,以及缺陷判别的智能化。 [p]
阵列式超声波探伤的一个缺点是可能忽视微小的焊接缺陷,即探伤的精度有一定的限制。这主要是由于用阵列式探头取代单探头的横向运动,从而使超声波对焊缝金属的连续扫描变为离散扫描,超声波束离散扫描的间距就为超声波探伤对缺陷的最大分辨率。为了提高分辨率,可通过降低超声波探头尺寸的方式,使一定尺寸范围内尽可能多地布置探头。当由于超声波探头尺寸的限制而无法提高分辨率时,可采用复排阵列式超声波探头,可成倍提高分辨率,如图3所示。 3系统实现
智能化超声波探伤系统组成如图4所示。阵列式超声波探头采用分时工作方式,计算机通过超声波探头选通信号确定某个探头处于工作状态,同时对超声波探头驱动电路发出允许发射信号,超声波探头驱动电路使被选通的探头发射超声波,该探头接收到回波信号经放大传回到计算机,计算机即可显示焊缝处某个深度上是否有缺陷。通过每一个探头的轮流工作,即可知道该剖面焊缝上是否有缺陷,如果有缺陷,则缺陷的起始深度和终止深度即可被确定。
图4 智能化超声波探伤系统示意图
图5
参考文献
1赵思连 .船舶焊接缺陷及其检验 .武汉造船, 2001(3)
2何汇 .常规超声波检测技术初步 .无损探伤, 2001(6)
3曾祥照 .无损检测文化概论 .无损探伤, 2002(2)
4孙宗泰 .工业超探中的图像检测与波形检测.无损探伤, 2002(4)
5杨文华 .三峡点站排沙钢管超声波检测 .无损探伤,2002(3)
6崔大海 .焊接桥梁的超声波探伤 .无损探伤, 2002(5)
7郑中兴,孙岳宗,宁志刚等 .输气管线对接环缝的超声(end)
上一篇:智能化产品表面在线检测新技术
下一篇:微型光纤光谱仪在颜色测量中的应用