- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于STC12C2052AD单片机的改进型调压电路设计
引言
通信电源系统由整流设备、直流配电设备、蓄电池组、直流变换器、机架电源设备和相关的配电线路组成的总体称为直流供电系统。通信电源系统一般包括双回路10 kV高压系统、10 kV/380 V的低压变配电系统、油机供电系统、高频开关电源系统(直流整流及配电系统)、UPS系统、防雷接地系统、集中监控系统等。而在基站供电系统中,一般不包括10 kV高压系统,通常直接引入当地的220/380 V电源,其他的基本相同。通信电源系统在整个通信行业中虽然占的比例比较小,但它是整个通信网络的关键基础设施,是通信网络上一个完整而又不可替代的独立专业。对于电源产品来说也是最基础的,产品技术的发展和变化速度也不同于其他通信产品,通信电源产品的种类繁多,包括高频开关电源设备、半导体整流设备、直流-直流模块电源、直流-直流变换设备、逆变电源设备、交、直流配电设备、交流稳压器、交流不间断电源(UPS)、铅酸蓄电池、移动通信手持机电池、发电机组、集中监控系统等。
在ZXC10通信电源系统中,上位机输出的PWM调制信号的频率为1 kHz,而且系统要求电源能根据PWM信号的占空比进行调压。PWM信号5%占空比对应40±0.5 Vdc,95%的占空比对应60±0.5 Vdc。以前此功能是用带有D/A的单片机来实现。脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
1 单片机调压系统
通过带有D/A的单片机来实现调压系统的方框图如图1所示。但是,由于带有D/A的单片机比较贵,因而会增加产品成本。而如果把PWM调制信号的频率提高,再经过一个简单的二阶有源低通滤波器来产生调压偏移量,则可用不带D/A转换的单片机来实现调压,其改进后的电路方框图如图2所示。
2 STC12C2052AD的PCA/PWM工作原理
由于STC12C2052AD单片机是作于1个时钟/机器周期,且有增强型8051内核,故其速度比普通8051快8~12倍。该单片机有2路可编程计数器阵列(PCA)/PWM,其中PCA1模块用作捕获模式,可识别输入的PWM调制信号,PCA0模块用作脉宽调节模式(PWM),可实现频率转换。
2.1 STC12C2052AD单片机的PCA捕获模式
STC12C2052AD系列单片机中的PCA可编程计数器阵列含有一个特殊的16位定时器,它可与2个16位捕获/比较模块相连。每个模块可编程工作在4种模式下,即:上升/下降沿捕获、软件定时器、高速输出或可调制脉冲输出。设计时,可将模块0连接到P3.7(CEX0/PCA0/PWM0),模块1连接到P3.5(CEX1/PCA1/PWM1)。由于寄存器CH和CL的内容是正在自由递增计数的16位PCA定时器的值,因此,PCA定时器可作为2个模块的公共时间基准,并可通过编程工作在1/12振荡频率、1/2振荡频率、定时器0溢出或ECI脚的输入(P3.4)。
要使PCA模块工作在图3所示的捕获模式,寄存器CCAPMn中的CAPNn和CAPPn至少应有一位必须置1。对模块的外部CEXn输入(包括CEX0/P3.7、CEX1/P3.5、CEX2/P2.0、CEX3/P2.4口)的跳变进行采样时,若采样到有效跳变,其PCA硬件就将PCA计数器阵列寄存器(CH和CL)的值装载到模块的捕获寄存器中(CCAPnL和CCAPnH)。
2.2 STC12C2052AD的PCA脉宽调节模式
所有PCA模块都可按图4所示的工作模式用作PWM输出。其输出频率取决于PCA定时器的时钟源。由于所有模块均共用仅有的PCA定时器,所以,它们的输出频率相同。各个模块的输出占空比是独立变化的,与使用的捕获寄存器{EPCnL,CCAPnL}有关。当CL SFR的值小于{EPCnL,CCAPhL}时,输出为低,而当PCA CLSFR的值等于或大于{EPCnL,CCAPnL}时,输出为高。当CL的值由FF变为00溢出时,{EPCnH,CCAPnH}的内容将被装载到{EPCnL,CCAPnL}中。
3 PWM信号的接收与转换
3.1 PWM调制信号接收模块
由于要用PCA1模块来把上位机输出的频率为1 kHz的PWM调制信号的频率提高(因为频率越高,越容易滤波),故将PCA定时器的时间基准置为1/2振荡频率。用PCA1 (P3.7)模块来识别接收的PWM调制信号时,应使PCA1工作在上升/下降沿捕获工作模式,并打开PCA中断。设计时,可首先设置PCA1工作在上升沿捕获工作模式,这样,当P3.7脚采样到上升沿跳变时,PCA0模块即可将PCA计数器阵列寄存器CH和CL的值装载到模块的捕获寄存器中{CCAP1H,CCAP1L}。然后在中断中把{CCAP1H,CCAP1L}的值存放到自定义的数据单元{UP_DATAH,UP_DATAL}中,并在中断中把PCA1工作模式设置为下降沿捕获工作模式,从而在P3.7脚采样到下降沿跳变时,PCA1模块硬件就可将PCA计数器阵列寄存器{CH,CL)的值装载到模块的捕获寄存器中{CCAP1H,CCAP1L}。之后,再在中断中把{CCAP1H,CCAP1L}的值存放在数据单元{DOWN_DATAH,DOWN_DATAL}中,并利用双字节无符号数减法得出PWM调制信号正脉冲时定时器的计数个数为:
N1={DOWN_DATAH,DOWN_DATAL)-{DOWN_DATAH,DOWN_DATAL}
由于PWM调制信号的频率为1 kHz,周期T为1 ms。因此,可设1 ms中PCA定时器的计数个数为N2,则PWM调制信号的占空比为:
3.2 PWM调制信号的频率转换
上位机输出的PWM调制信号的频率为1 kHz左右。由于该频率比较低,直接对其进行滤波后的纹波比较大,因此,在滤波之前,应先把接收的PWM调制信号转变成与占空比成线性比例的高频PWM调制信号,频率转换可通过PCA0 (P3.5)PWM功能模块来实现。
这样,当PCA0模块设置为PWM输出模式时,根据PCA脉宽调节模式(PWM)的工作原理,当CCAP0L=FFH时,P3.5将输出占空比为0的PWM信号,而当CCAP0L=80H时,P3.5则输出占空比为50%的PWM信号,当CCAP0L=0时,P3.5会输出占空比为100%的PWM信号。
4 二阶滤波电路
图5所示为有源二阶滤波电路的原理图。由有电源变换器的反馈量可知,当调压偏移量为1.5V的时候,电源输出40 V;当调压偏移量为3.0V的时候,电源输出60 V。因此,在PWM信号的占空比为5%时,调节二阶有源滤波器的参数,并通过调节R5/R4来改变运算放大器的增益,然后调节RW1即可改变运算放大器的基准,使偏移量VS为1.5 V;而在PWM信号占空比为95%时,使偏移量VS为3.0 V。
5 仿真验证
根据图5进行PSIM仿真验证时,可将仿真参数设定为:R1=R2=R4=R5=10 kΩ,R3=20 kΩ,R6=2 kΩ,R7=1 kΩ,C1=C2=C3=C4=104 pF,从而得出如图6所示的特定占空比的Vs波形。
其它特定占空比(D=5%,20%,40%,60%,80%,95%)的仿真记录数据如表1所列。图7所示是该调压电路的PWM信号占空比与Vs调压偏移量的变化曲线。由图可见,该变化呈线性关系。
6 结束语
本文通过提高PWM调制信号的频率,再结合二阶有源滤波电路,实现了频率到电压的一种转换。该转换可在40Vdc~60Vdc范围内,对ZXC10通信电源的输出电压通过PWM信号进行线性调节。