• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 数字工程师需要掌握的射频知识

数字工程师需要掌握的射频知识

录入:edatop.com    点击:

做为一名高速数字电路设计或测试的工程师,仅仅借助于传统的时域方法去对信号和传输通道进行研究会面临很多制约。数字工程师需要掌握哪些射频知识呢?让我们分两期带大家去了解一下。

*** 上篇 ***

一、前言

随着人们对于海量数据传输和存储的需要,越来越多的数字总线数据速率达到了Gbit/s以上,比如HDMI的数据速率达到3.4Gb/sUSB3.0 的数据速率达到5Gb/sSATA的数据速率达到6Gb/sPCIE3.0的数据速率达到8Gb/s,通信中也越来越多采用10Gb/s25Gb/s的速率进行信号传输。这些数字信号的数据速率已经达到甚至超过了我们传统上所说的射频或微波的频段,真实的数字信号在传输过程中,也越来越多地表现出其微波电路的特性。

在对这些高速信号进行分析时,传统的时域分析方法面临精度不够以及分析手段欠缺等问题,而射频微波领域的频域的分析手段则非常成熟和完善。因此,对于高速数字信号的分析和测量也越来越多地开始采用一些射频或微波的分析方法。

二、数字信号的带宽

要进行数字信号的分析,首要的原因是真实传输的高速数字信号已经远远不是教科书里理想的0/1电平。真实的数字信号传输过程中一定会有一些(甚至很严重的)失真和变形。

1. 理想和真实数字信号的差异

要进行数字信号的研究,首先要得到真实的数字信号波形,这就涉及到使用的测量仪器问题。观察电信号的波形的最好工具是示波器,当信号速率比较高时,一般所需要的示波器带宽也更高。如果使用的示波器带宽不够,信号里的高频成分会被滤掉,观察到的数字信号也会产生失真。很多数字工程师会习惯用谐波来估算信号带宽,但是这种方法不太准确。

对于一个理想的方波信号,其上升沿是无限陡的,从频域上看它是由无限多的奇数次谐波构成的,因此一个理想方波可以认为是无限多奇次正弦谐波的叠加。

但是对于真实的数字信号来说,其上升沿不是无限陡,因此其高次谐波的能量会受到限制。比如下图是用同一个时钟源分别产生的50Mhz250MHz的时钟信号的频谱,我们可以看到虽然输出时钟频率不一样,但是信号的主要频谱能量都集中在5GHz以内,并不见得250MHz的频谱分布就一定比50MHz的大5倍。

2. 同一信号源产生的不同频率时钟信号的频谱

对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络是一个Sinc函数。下图是用同一个发射机分别产生的800Mbps2.5GbpsPRBS信号的频谱,我们可以看到虽然输出数据速率不一样,但是信号的主要频谱能量都集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。

3. 同一信号源产生的不同速率数字信号的频谱

频谱仪是对信号能量的频率分布进行分析的最准确的工具,所以数字工程师可以借助于频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间去估算被测信号的频谱能量:

Maximum signal frequency content = 0.4/fastest rise or fall time (20 - 80%)

Or

Maximum signal frequency content = 0.5/fastest rise or fall time (10 - 90%)

三、传输线对数字信号的影响

通过前面的研究我们知道数字信号的频谱是分布很宽的,其最高的频率分量范围主要取决于信号的上升时间而不仅仅是数据速率。当这样高带宽的数字信号在传输时,所面临的第一个挑战就是传输通道的影响。

真正的传输通道如PCB、电缆、背板、连接器等的带宽都是有限的,这就会把原始信号里的高频成分销弱或完全滤掉,高频成分丢失后在波形上的表现就是信号的边沿变缓、信号上出现过冲或者震荡等。

另外,根据法拉第定律,变化的信号跳变会在导体内产生涡流以抵消电流的变化。电流的变化速率越快(对数字信号来说相当于信号的上升或下降时间越短),导体内的涡流越强烈。当数据速率达到约1Gb/s以上时,导体内信号的电流和感应的电流基本完全抵消,净电流仅被限制在导体的表面上流动,这就是趋肤效应。趋肤效应会增大损耗并改变电路阻抗,阻抗的改变会改变信号的各次谐波的相位关系,从而造成信号的失真。

除此以外,最常用来制造电路板的FR-4介质是玻璃纤维编织成的,其均匀性和对称性都比较差,同时FR-4材料的介电常数还和信号频率有关,所以信号中不同频率分量的传输速度也不一样。传输速度的不同会进一步改变信号中各个谐波成分的相位关系,从而使信号更加恶化。

因此,当高速的数字信号在PCB上传输时,信号的高频分量由于损耗会被销弱,各个不同的频率成分会以不同的速度传输并在接收端再叠加在一起,同时又有一部分能量在阻抗不连续点如过孔、连接器或线宽变化的地方产生多次反射,这些效应的组合都会严重改变波形的形状。要对这么复杂的问题进行分析是一个很大的挑战。

值得注意的一点是,信号的幅度衰减、上升/下降时间的改变、传输时延的改变等很多因素都和频率分量有关,不同频率分量受到的影响是不一样的。而对数字信号来说,其频率分量又和信号中传输的数字符号有关(比如0101的码流和0011的码流所代表的频率分量就不一样),所以不同的数字码流在传输中受到的影响都不一样,这就是码间干扰ISIinter-symbol interference ISI)。

4. 受到严重码间干扰的高速数字信号

为了对这么复杂的传输通道进行分析,我们可以通过传输通道冲击响应来研究其对信号的影响。电路的冲击响应可以通过传输一个窄脉冲得到。理想的窄脉冲应该是宽度无限窄、非常高幅度的一个窄脉冲,当这个窄脉冲沿着传输线传输时,脉冲会被展宽,展宽后的形状和线路的响应有关。从数学上来说,我们可以把通道的冲击响应和输入信号卷积得到经通道传输以后信号的波形。冲击响应还可以通过通道的阶跃响应得到,由于阶跃响应的微分就是冲击响应,所以两者是等价的。

看起来我们好像找到了解决问题的方法,但是,在真实情况下,理想窄的脉冲或者无限陡的阶跃信号是不存在的,不仅难以产生而且精度不好控制,所以在实际测试中更多地是使用正弦波进行测试得到频域响应,并通过相应的物理层测试系统软件得到时域响应。相比其它信号,正弦波更容易产生,同时其频率和幅度精度更容易控制。矢量网络分析仪VNAvector network analyzer)可以在高达几十GHz的频率范围内通过正弦波扫频的方式精确测量传输通道对不同频率的反射和传输特性,动态范围达100dB以上,所以现代在进行高速传输通道分析时主要会用矢量网络分析仪去进行测量。

被测系统对于不同频率正弦波的反射和传输特性可以用S参数(S-parameter)表示,S参数描述的是被测件对于不同频率的正弦波的传输和反射的特性。如果我们能够得到传输通道对于不同频率的正弦波的反射和传输特性,理论上我们就可以预测真实的数字信号经过这个传输通道后的影响,因为真实的数字信号在频域上看可以认为是由很多不同频率的正弦波组成的。

对于一个单端的传输线来说,其包含4S参数:S11S22S21S12S11S22分别反映的是1端口和2端口对于不同频率正弦波的反射特性,S21反映的是从1端口到2端口的不同频率正弦波的传输特性,S12反映的是从2端口到1端口的不同频率正弦波的传输特性。对于差分的传输线来说,由于共有4个端口,所以其S参数更复杂一些,一共有16个。一般情况下会使用4端口甚至更多端口的矢量网络分析仪对差分传输线进行测量以得到其S参数。

5. 差分传输线的S参数模型

如果得到了被测差分线的16S参数,这对差分线的很多重要特性就已经得到了,比如说SDD21参数就反映了差分线的插入损耗特性、SDD11参数就反映其回波损耗特性。

我们还可以进一步通过对这些S参数做过反FFT变换得到更多信息。比如对SDD11参数变换得到时域的反射波形(TDR:Time Domain Reflection),通过时域反射波形可以反映出被测传输线上的阻抗变化情况。我们还可以对传输线的SDD21结果做反FFT变换得到其冲击响应,从而预测出不同数据速率的数字信号经过这对差分线以后的波形或者眼图。这对于数字设计工程师都是些非常有用的信息。

6. 矢量网络分析仪测到的通道插损及分析出的信号眼图

用矢量网络分析仪(VNA)对数字信号的传输通道进行测量,一方面借鉴了射频微波的分析手段,可以在几十GHz的频率范围内得到非常精确的传输通道的特性;另一方面,通过对测量结果进行一些简单的时域变换,我们就可以分析出通道上的阻抗变化、对真实信号传输的影响等,从而帮助数字工程师在前期阶段就可以判断出背板、电缆、连接器、PCB等的好坏,而不必等到最后信号出问题时再去匆忙应对。

*** 下篇 ***

在这里,我们分两期为大家讲述了数字工程师需要掌握的射频知识,希望大家在内容上能够理解,并且在今后的工作中都有所帮助。

四、信号处理技术

既然传输通道的ISI的影响可以通过事先对传输通道的特性进行精确测量而预测出来,那么就有可能对其进行修正。发送端的预加重和接收端的均衡电路就是两种最常见的对通道传输的影响进行补偿的方法。传输通道最明显的影响是其低通的特性,即会对高频信号进行比较大的衰减。对于一个方波信号来说,其高次谐波对于信号形状的影响很大,如果所有高次谐波全部被衰减掉了,方波看起来就象个正弦波了。

预加重(Pre-emphasis)是一种在发送端事先对发送信号的高频分量进行补偿的方法。这种方法是增大信号跳变边沿后第一个bit(跳变bit)的幅度(预加重)。比如对于一个00111的序列来说,做完预加重后序列里第一个1的幅度会比第二个和第三个1的幅度大。由于跳变bit代表了信号里的高频分量,所以这种方法有助于提高发送信号里的高频分量。在实际实现时,有时并不是增加跳变bit的幅度,而是相应减小非跳变bit的幅度,这种方法有时又叫去加重(De-emphasis)。

7. 预加重对信号的影响

当信号速率进一步提高或者传输距离较长时,仅仅使用发送端的预加重技术已不能充分补偿传输通道带来的损耗,这时就需要在接收端同时使用均衡技术来提高信号质量以保证正确的0/1判决。常见的信号均衡技术有3种:CTLEcontinuous timelinear equalizer )FFEfeed forwardequalization)和DFEdecision feedbackequalizer)。

CTLE是在接收端提供一个带通滤波器,这个带通滤波器可以对信号里的主要高频分量进行放大,这点和发送端的预加重技术带来的效果是类似的。FFE则是根据相邻bit的电压幅度的加权值来进行幅度的修正,每个相邻bit的加权系数直接和通道的冲击响应有关。CTLEFFE都是线性均衡技术,而DFE则是非线性均衡技术。DFE技术是通过相邻bit的判决电平对当前bit的判决阈值进行修正,设计合理的DFE可以有效补偿ISI对信号造成的影响。但是DFE正确工作的前提是相邻bit0/1电平是判决正确的,所以对于信号的信噪比有一定要求。一般情况下是先用CTLEFFE来把信号眼图打开,然后再用DFE进一步优化。

8. 均衡对信号眼图的改善

五、信号抖动分析

抖动(Jitter)反映的是数字信号偏离其理想位置的时间偏差。高频数字信号的bit周期都非常短,一般在几百ps甚至几十ps,很小的抖动都会造成信号采样位置电平的变化,所以高频数字信号对于抖动都有严格的要求。

9. 抖动的定义

实际信号的很复杂,可能既有随机抖动成分(RJ),也有不同频率的确定性抖动成分(DJ)。确定性抖动可能由于码间干扰或一些周期性干扰引起,而随机抖动很大一部分来源于信号上的噪声。下图反映的是一个带噪声的数字信号及其判决阈值。一般我们把数字信号超过阈值的状态判决为"1",把低于阈值的状态判决为"0",由于信号的上升沿不是无限陡的,所以垂直的幅度噪声就会造成信号过阈值点时刻的左右变化,这就是由于噪声造成信号抖动的原因。

10. 幅度噪声带来的随机抖动

要进行信号抖动的分析,最常用的工具是宽带示波器配合上响应的抖动分析软件。示波器里的抖动分析软件可以方便地对抖动的大小和各种成分进行分解,但是示波器由于噪声和测量方法的限制,很难对亚ps级的抖动进行精确测量。现在很多高速芯片对时钟的抖动要求都在1ps以下甚至更低。这就需要借助于其它的测量方法比如相位噪声(phase noise)的测量方法。

我们知道抖动是时间上的偏差,它也可以理解成时钟相位的变化,这就是相位噪声。对于时钟信号,我们观察其基波的频谱分布。理想的时钟信号其基波的频谱应该是一根很窄的谱线,但实际上由于相位噪声的存在,其谱线是比较宽的一个包络,这个包络越窄,说明相位噪声(抖动)越小,信号越接近理想信号。下图是一个真实时钟信号的频谱,信号的基波在2.5GHz,我们观察2.5GHz附近10MHz带宽的频谱。我们可以看到首先信号的频谱不是一根很窄的谱线,其谱线有展宽(随机噪声的影响),其次上面叠加的还有一些特定频率的干扰(确定性抖动的影响)。

11. 频谱仪上看到的时钟载波信号附近的频谱

为了更方便观察低频的干扰,在相位噪声测量中通常会以信号的载波频率为起点,把横坐标用对数显示,其横坐标反映的是离信号载波频率的远近,纵坐标反映的是相应频点的能量和信号载波能量的比值。这个比值越小,说明除了载波以外其它频率成分的能量越小,信号越纯净。要进行时钟信号的相位噪声精确测量使用的仪器是信号源分析仪,信号源分析内部有特殊的电路,通过两个独立本振的多次相关处理可以把自身本振的相位噪声压得非常低,从而可以进行精确的相位噪声测量。

12. 信号源分析测到的时钟信号的相位噪声

对于很多晶振产生的时钟来说,其抖动中的主要成分是随机抖动。如果我们把相位噪声测试结果里不同频率成分的相位噪声能量进行积分的话,我们就能够得到随机抖动。通过信号源分析仪对相位噪声测量然后对一定带宽内的能量进行积分,我们就可以得到精确的随机抖动测量结果。信号源分析仪能测量到的最小抖动可以到fs级。

六、总结

综上论述可见,做为一个高速数字电路设计或测试的工程师,仅仅借助于传统的时域方法去对信号和传输通道进行研究面临很多制约。但如果掌握一些射频微波的知识,数字工程师就可以借助于频谱仪分析信号频谱从而了解信号的频率分布及对带宽的要求;可以借助矢量网络分析仪分析传输通道的S参数从而了解通道的阻抗变化、对不同频率的反射和损耗情况以及预测对信号的影响;可以了解预加重、均衡等技术对高频损耗的补偿效果;可以借助信号源分析仪进行更精确的时钟抖动测量。这些射频微波领域成熟的分析方法和测量手段可以为数字工程更深刻了解其高速信号提供更多有用信息,进一步拓展了数字工程师对高速信号的分析能力。(完)

原文出自是德科技应用工程师李凯

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:多通道接收机幅相校准测试系统的设计
下一篇:多发射机手持设备的SAR测量要求

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图