- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
由DAC谐波频谱成分重构其传递函数
g(t)由2N个样本组成,因此由包括2N个采样的u(t)采样值集重构f(x)似乎是合理的。然而,事实却是至少需要2N+3个采样才能为较小的Mh值提供适当的精度。这种情况下,u(t)各采样点的计算公式应如下:
(n=0,1,2,3 .. 2N+3– 1)
请注意,这将导致u(t)所含的采样数多于g(t),u(t)的多个样本可能与f(x)和g(t)上的一个点对应,从而使u(t)和g(t)到f(x)的映射关系复杂化。因此,必须对特定的样本组求平均值,以便提供到f(x)的合理映射。下面的伪代码反映了所需的映射关系,其中假设使用一个N位DAC,g(t)有2N个点,u(t)有2N+3个点。阵列DacXfr含有2N个元素,初始值均为0。执行该代码后,阵列DacXfr的元素包含归一化的DAC传递函数。
验证
为验证本文所述的方法,使用一台频谱分析仪来测量一个14位DAC的输出;该DAC由一个代表理想正弦波的输入序列驱动。记录了前14次谐波的幅值(2次到15次,单位dBc),并利用这些值重构DAC传递函数f(x)。然后,将理想正弦输入序列g(t)代入重构的DAC传递函数f(x)进行模拟,产生一个输出序列。一个FFT将u(t)转换为频域等效值U(ω)。从U(ω)提取谐波幅值,并将其与频谱分析仪的测量结果相比较,如表1所示。请注意,与7次谐波相关的最大误差仅为0.065 dB。
由于比例关系,重构传递函数的图形呈现为一条直线(y=x)。事实上,该传递函数与y=x的偏差足以产生表1所示的谐波成分。为帮助理解,图5仅显示了该传递函数与理想直线的偏差。垂直轴的单位为LSB。
图5. DAC传递函数的残差
作者: Ken Gentile
上一篇:频谱分析仪的频率分辨力和测试灵敏度
下一篇:采用扩展频谱方法减少EMI问题