- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
由DAC谐波频谱成分重构其传递函数
数值序列(gn)以采样速率fs重复提供给DAC,因此DAC输出频谱含有频率f0=fs/2k的基波信号。谐波出现在2f0、3f0、4f0和f0的其它整数倍。由于DAC输出频谱具有采样性质,因此这些谐波的幅度受sin(x)/x响应的限制。不过,f0与fs相比微不足道,因此sin(x)/x响应实际上是平坦的,可忽略不计。例如,对于一个8位DAC,K ≥ 11且f0 ≤fs/2048,100次谐波的sin(x)/x将不超过0.39% (0.034 dB)。
为了准确重构传递函数f(x),需要根据谐波数(h)集尽可能记录更多谐波的幅值。这些整数从h=1(基波频率)至h=H,其中H表示取测量幅值的最高谐波数。例如,对于10次谐波的测量,H=10,该谐波数集为h={1, 2, 3, .. 10}。
然后,将各测量谐波的幅值(M)与其谐波数关联。例如,M1是1次谐波(基波)的幅值,M2是2次谐波的幅值,依此类推至MH。谐波幅值通常用相对于基波幅值的分贝数(dBc)来衡量。dBc转换为线性单位的公式如下:
其中D表示测得的谐波幅值,单位为dBc。例如,如果3次谐波的幅值为–40 dBc,则线性幅值M3=10–40/20或0.01。M1始终等于1,因为根据定义,基波的幅值为0 dBc。
第二步:重构DAC传递函数
该过程的第二步涉及到将谐波测量结果与传递函数相关。f(x)上的点取决于g(t)和u(t)上对应点之间的关系,因此首先必须将频域中的谐波幅值转换到时域。请注意,组成g(t)的DAC码与g(t)正弦形式的相关时间点一一对应。因此,构成g(t)的DAC码与时域相关。此外,u(t)通过f(x)与g(t)相关,而g(t)是一个时域函数,因此u(t)也必须表示为时域函数。这样就能将g(t)中的各时间点tk链接到u(t)中的相关时间点,从而由g(t)和u(t)确定f(x)。
将谐波幅值转换到时域非常困难,因为f(x)必须明确与g(t)中的各可能DAC码(0至2N–1)相关。g(t)是一个理想正弦波,因此确保唯一性的唯一方法是将范围限制在该正弦波单调增加的位置,如图3加粗部分所示。如果没有这一限制条件,f(x)上的一个点可能会映射到g(t)上的两个点,从而导致不明确。
为演示这种不定性,请想象将区间T向下移动。现在,f(x)上的点(xk, fkxk))可以与g(t)上的两个点相关,这是不可接受的。将范围T限制在图中所示位置,将不存在不定性。g(t)为正弦波,因此所需范围T对应于1/2周期,其初始相位偏移为3π/2弧度。
图3. f(x)与g(t)之间的关系
g(t)的范围受T限制意味着u(t)也具有类似的范围限制。因此,将所记录的谐波幅值转换到时域时,必须确保将u(t)限制在与g(t)相同的范围T,如图4所示。
图4. g(t)和u(t)的时域范围
上一篇:频谱分析仪的频率分辨力和测试灵敏度
下一篇:采用扩展频谱方法减少EMI问题