- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
在稳健设计流程中采用Saber仿真器提高系统的可靠性
值得注意的是,统计分析工作的计算量可能极为繁重,对复杂系统进行千百次以上的性能仿真会消耗相当大的计算资源,我们可以采用支持分布式计算的工具来缓解这一资源需求。
Saber仿真器支持先进的统计分析。可对行为模型的参数数值赋予具有多种统计分布的容差,包括预定义的分布方式到用户自定义的分布方式。Saber的许多特征化模型包含了容差和分布信息。这些容差和分布经过Saber的Monte Carlo分析后,就能提供系统精确的统计全景图。Saber仿真环境支持文本和图形化的统计数据分析。
5.应力分析
在应力分析中,要对系统执行仿真,观察它在满足性能指标时是否会导致一些器件超出其安全工作范围。对器件的所有参数赋予最大额定值,观察其工作参数是否超过最大额定值,超过最大额定值就属于应力过度的情况。应力分析要求采用性能额定数据对器件进行特征化。
Saber库内的许多模型既可以内建性能额定值,又允许在模型特征化的过程中添加额定值信息。有了额定值信息,Saber的应力分析即可分析模型工作时所承受的应力。Saber随后会生成一份详细描述每一个器件所受应力情况的报告。
6.故障模式分析
稳健设计流程的最后一步是确定在个别器件发生故障时系统的行为。根据系统的类型以及系统所采用的技术,单个部件的故障可以导致系统整体故障,或系统虽能继续运行但不能符合设计要求,或者系统能够从这一故障中恢复并继续满足性能指标。对故障模式要求通常在设计技术规格书中提出,必须在设计流程中进行验证。
Saber的Testify故障模式分析工具能够帮助设计师在系统设计中设置并运行故障模式试验。在故障模式分析过程中,部件可通过多种方式并在指定的时间引发故障。在某个器件发生故障时,Saber可以继续执行仿真,设计师就可以研究这项故障是如何影响系统性能的。
选择正确的工具
实现有效而高效的稳健设计流程要求使用具备特殊能力的仿真工具,对工具的关键要求为仿真支持、模型库支持、建模语言支持和高级数据分析。
只通过一些标准分析并不能建立稳健设计流程。对稳健设计过程的每一步骤,仿真器都必须具备特定的、内在的功能:标称设计、敏感性分析、参数分析、统计分析、应力分析和故障模式分析。对这些高级分析的简单支持并不足够,为满足特定的系统设计目标,设计师必须能够对模型和分析进行定制。
除了先进的分析功能外,仿真器还必须有精确的模型库的支持。稳健设计流程要求同时配备行为级和特征化器件模型。为了保证精度,模型应当以定义器件行为的公式为基础。行为级模型可以使设计师很容易地获取关键参数。特征化模型应当采用由基准测试中采集到的数据,而非器件手册中的数据来创建。
无论模型库多么广泛,也肯定会出现没有所需模型的情况。因此,稳健设计流程所使用的仿真器必须支持各种标准的建模语言,这些建模语言应当让设计师能够根据实际器件公式来创建模型,而且建模语言应当在设计师所在行业内得到充分的使用和验证。
最后,仿真器必须有用于分析仿真数据、功能强大的后处理工具的支持。这些工具应当让设计师能够深入观察到设计的详细情况,并能够实现对设计数据的测量、组合和转化,这样,设计师才能对系统性能得出完整而准确的全面了解。
正如在上面的稳健设计流程中所提到的,由于Saber仿真器同时支持高级分析和模型库,因此,它可以实现有效而高效的稳健设计流程。Saber还支持在系统设计领域得到了充分使用,并得到了认可的MAST(事实标准)和VHDL-AMS(IEEE标准)建模语言。在数据分析方面,Saber设计环境中包含了CosmosScope工具,这是一种设计师在分析设计数据时可以灵活控制的功能丰富的后处理工具。
作者:
Michael Jensen
技术销售工程师
Madhav S. Phadke
Synopsys公司
上一篇:用两个单向电流检测放大器
成一个双向电流检测放大器
下一篇:工业电源测量浅谈