- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
开放式FPGA增加测试灵活性
功率放大器的输出功率调整步骤类似于传统方法步骤,不同的是调整循环是在开放式FPGA内部运行。在FPGA内运行循环可大大降低每次调整所需的时间。
与在主机上运行控制循环相比,通过使用开放式FPGA,并在FPGA上执行控制循环,调整待测设备输出功率所需的时间将大大缩短。对于本例中的DUT,功率调整只需大约5毫秒,而采用传统方法则需要150毫秒。请注意,基于硬件的方法比传统方法多一个步骤。但是,调整所需的总体时间却少得多。与图4相比,在图6中,前面几个步骤执行的速度非常快(缩短了平均时间),之后随着调整循环的收敛,点之间的间距不断增大。
图6. 与传统方法相比,基于硬件的调整可使功率电平上升的时间大大缩短。
信号处理
用户可编程FPGA最典型的应用之一是减少仪器上必须发送回主机进行处理的数据量,从而将通信总线释放出来进行其他数据传输,同时降低了CPU的负荷。常见的方法包括对采集的数据集进行复杂触发、滤波、峰值检测或者执行FFT(快速傅立叶变换)。
例如,在图7所示的应用中,有四个待测设备需要并行进行测试。ADC(模拟数字转换器)将采样数据传送至FPGA,但当收到一个自定义触发才会开始采集数据。在采集数据时,FPGA会对测量结果进行实时平均,然后将计算结果序列化到记录中。接着,对记录的数据进行FFT,然后开始测量SFDR(无杂散动态范围)、SNR(信噪比)和SINAD(信噪失真比)。这些结果仅仅是来自ADC的输入信号的一小部分数据,通过DMA FIFO(直接内存存取,先入先出)机制传输至主机。
图7. 开放式FPGA可让您采集数据、对信号取平均值以去噪、将并行数据转化为串行数据,并应用数学运算、FFT和滤波。
FFT作为DSP中的一个基本函数,FFT可用于许多测试应用。FPGA具有这个功能有助于测试频域触发、数据压缩、基于频率的闭环控制和图像处理等应用。图8显示了该示例如何使用LabVIEW FPGA实现FFT。
图8. 代码显示了开放式FPGA上执行FFT的位置。
虽然本文提到的仅仅是FPGA几个令人激动的数字信号处理功能,但是FPGA上还具有许多其他功能可用于测试应用中。许多开放式FPGA均具有这种处理功能,图9显示的是NI硬件通过LabVIEW FPGA可实现的一些处理类型。
图9. FPGA上具有的数字信号处理功能包括数学运算、滤波、三角函数和视频处理。
随着开放式FPGA在整个测试测量行业的日益普及,具有固定功能的仪器将会逐步被淘汰。相反,仪器的功能将越来越多地由软件来定义,这类似于“应用程序”为移动设备行业带来的变革。测试应用程序将不再受限于测试厂商可以开发何种软件功能,而是受限于硬件和使用该仪器的工程师的想象力。
上一篇:测试混合动力发动机技术
下一篇:如何在硅芯片制作完成前进行软件开发