- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
2012让工作更智能的六大PCB设计技术策略
技术策略 2:虚拟样机
通常各公司通过建立和测试多个原型来验证他们的产品。设计一个PCB,构建物理原型,在实验室中测试,确定需要做出哪些改变,重新设计,然后重复相关流程。
这种方法存在几个问题。首先,建立并调试样机非常耗时和昂贵。如果上市时间很紧迫,就很可能错过市场时机。其次,在实验室中测试可能无法发现所有潜在问题。例如,你希望产品在剧烈震动等恶劣环境中使用多年,但是“震动和热处理”实验室可能无法运行足够长的时间以发现长周期性的问题。同样,信号完整性也存在这一问题。极端的临界条件很有可能无法在实验室中获得。
未来的解决方案是在软件中进行模拟,如:虚拟样机。该操作可以在PCB设计流程中执行,并且会覆盖许多可能的领域:信号(数字、模拟、射频)和电源网络完整性;集成电路、封装、PCB和全系统模拟中的热管理;振动和冲击(图 2);PCB制造和组装实践;3D 机械接口等等。在整个设计流程中执行可以确保设计持续进行,无需备份和校正。此外,软件可以探测极端临界条件,并且可以在数小时内模拟实验室中数周和数月出现的问题。虽然设计师喜欢手中尽快拿到实物,而执行广泛的虚拟样机可能有所延迟,但后者可以缩短周期,减少成本,并且提高设计师的生产力和产品质量/可靠性。
图2:振动虚拟样机可以用几个小时的软件模拟来代替实验室内数周和数月的操作,并突出显示各个部件的潜在失效问题(红、黄、蓝)
技术策略 3:从设计到制造的流程支持
上市时间和产品成本是许多行业的关键。即使军事/航空和汽车等行业,在过去也面临较长开发时间和/或高成本的限制,现在对此问题也有更加积极的目标。此外,PCB设计师决不能忘记,即使数据进入制造流程,他们的责任也还没有结束。同时,从EDA供应商的角度来看,重要的是支持不是到设计阶段结束,不是让设计者轻松履行对可制造产品的责任,而要和制造商一起优化他们的生产线,实现最低成本的产品交付。
图3表明流程是不断发展的。从帮助制造商定义规则和实践能力的支持开始,对制造和组装流程中的产量和可靠性产生积极影响。这些DFM(可制造性设计)规则将被PCB设计师用于设计流程。DFM软件可在设计环境中找出问题,然后由设计师进行纠正。巧合的是,大多数制造商也使用相同的规则和软件来检查接收的设计数据。这样可以确保一旦设计进入制造流程,就可以持续执行,无需设计返工。
图3:全面的设计到制造流程支持,能够确保高产量、高产品可靠性和低生产成本
一旦设计通过智能化接口,如ODB++,进入制造流程,制造商可以利用软件进行生产线建模,并优化其利用。在生产线运行时,软件将持续监控零件按时交付、机器停工以及产品可追溯性等问题。即使发生质量缺陷,也可以确保跟踪并突显低于可接受故障率的设备或流程。
下一页:技术策略4