• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 针对客观视频质量的实时测量进行 像质量分析

针对客观视频质量的实时测量进行 像质量分析

录入:edatop.com    点击:

图像质量分析评分

图像质量分析即测量视频流的整体。 因此汇集了专业技术人员观看视频,并以其专业的主观角度评分,设立了Differential Mean Opinion Scores (DMOS)。 但此方法仍有许多待解的难题,如训练技术人员的成本,还有操作人员观看屏幕的重复性成本。 另一个重大挑战则是关于主观测试的质量。 在制造过程中,根本不可能聘请视频质量专家观看各组设备的生产细节,只能让水平较差的操作人员观看视频并评分。 因此如分心、疲劳、眼睛过度刺激等人为因素,均会降低产品品质而让劣质品过关,由此促使了工程师必须重新设计影像测试的方法。

较好的图像质量分析方式,即必须能重复套用客观的测量方式,以测量音频与视频的质量。 目前有多种算法,均与专业操作人员的主观评分相关。常见的两种测量之一为峰值信噪比 (PPSNR),它是以均方差 (MSE)以及德州大学图像与视频工程实验室(LIVE)的Al Bovik教授和其团队,所设定的结构相似性(SSIM)指数为构架。 此项指数已成为最具公信力的视频质量测量指数。 只要套用如PSNR与SSIM算法,即可通过自动化、可重复的测量方法,轻松评定视频质量。

针对客视频质量的实时测量进行图像质量分析
图4. 爱因斯坦照片的比较,代表了不同的失真程度: a) 参考图像, b)平均对比伸展, c)亮度平移, d)高斯噪音污染,e)脉冲噪音污染, f)JPEG压缩, g)模糊, h)空间缩放 (缩小), i)空间平移 (向右), i)空间平移 (向左), k)旋转 (逆时针), l)旋转 (顺时针)。

另一种视频质量测试方法是测量视频与音频内容的特定假影。 此时可套用特定瑕疵算法,以找出视频中的特定错误,如方格或帧像停滞/遗失。 许多生产应用不太需要如PSNR或SSIM的高性能测试。 反之,往往仅需确认没有产生宏区块、声频切割、视频停滞即可。 通过特定瑕疵的测量,即可迅速决定该款设备是通过还是失败。

具备NI Picture Quality Analysis软件的NI Digital Video Analyzer能够测量特定瑕疵,也可达到如PSNR与SSIM的高图像质量测量。 通过用户定义的测量,即可套用自定义的算法,以建立完全自定制的图像质量分析应用。

针对客视频质量的实时测量进行图像质量分析
图5. 针对水平与垂直空间中的宏区块,需采集并分析1080p60的视频流。

参考与无参考测试

针对视频/音频流,进行图像质量分析测量的方法目前有三种。

1. 无参考测试: 不论图像内容如何,此方式可将测量套用至任何系统。 而此测量方式的挑战之处在于,因分析图像内容的不同,测量结果的差异也相当大。

2. 简化参考测试: 简化参考测试则需要“金级”或理想样本设备。在测量了金级样本设备的音频/视频质量之后,其它设备即根据金级样本结果进行测试,以定义该系统是通过还是失败。

3. 完全参考测试:完整参考测试也需要金级的样本设备。但不同于简化参考测试(分別测量测试与参考流),完整参考是将2组串流依像素进行分析。它是目前功能最为强大的测试,但针对参考串流的分析,其处理/存储/检索的难度更高。PSNR与SSIM测量均属于完整参考方式。

针对客视频质量的实时测量进行图像质量分析
图6. 图片质量分析共有三种方式: 1)左图的无参考测试,可用于未知或无法重复的视频串流, 2)中间的简化参考测试,是在测量参考与测试流完成之后,再进行比较,3)右图的完整参考测试即在测试与参考流之间进行像素比较。

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:一个汽车冷却系统的设计
下一篇:使用基于模型的设计进行早期验证和确认

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图