- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于双DSP的电力系统谐波分析仪的设计
①DSP-L机工作周期由定时器1中断产生,工作周期为T4。在每个周期开始时进行电压、电流采集,并把采集数据按照乒乓缓存结构不断写到双口RAM中,当采集完一个周期时,向DSP-R机发中断,该中断执行时间为T1。
②DSP-R机响应中断后,完成软件滤波算法和FFT算法,从而进行谐波分析,并将谐波数据显示到LCD上,该中断执行时间为T2。
③DSP-L机从双口命令区读取R机键盘发出的命令并根据捕获测频结果自适应的调整采样间隔,完成对AD采集的采样控制和通过SPI接口完成对数字电位器AD5290的程控信号调理模块的控制,该中断执行时间为T3。
4 单色液晶屏模块
CM320240是一种图形点阵液晶显示器,主要采用动态驱动原理,由行驱动控制器和列驱动控制器两部分组成了320(列)×240(行)的全点阵液晶显示,此显示器内含了硬件字库,编程模式简介方便。
该液晶模块的读写周期周期最小为800ns。如果采用总线方式控制液晶模块,TMS320F2812读、写周期最大值为200ns,不能满足该液晶模块的要求,故采用间接的控制方式。为节约硬件成本,本系统选用通用GPIO来控制液晶屏的读写信号。
5 键盘模块
为满足实时性要求,本系统采用按键中断方式完成人机交互功能。键盘有六个独立的按键组成,当任一按键按下时,INT13引脚的输入出现低电平跳变(INT13设置为下降延触发)触发DSP外部中断,CPU响应中断后在中断服务子程序中读取键盘状态,并执行相应的操作。6个按键分别为A相电压、B相电压、C相电压、A相电流、B相电流、C相电流。
系统软件设计
系统上电后按照选定的模式自举加载程序,跳转到主程序入口,进行相关变量、数据乒乓缓冲区、命令区、控制寄存器初始化,并使能XINTF和A/D定时采样中断。定时中断产生后,DSP-L机内部A/D开始对6组传感器信号进行采样,并将转换结果存到乒乓缓冲区,然后通过中断交互式协调工作模式将结果传送至DSP-R机,DSP-R机调用FFT程序对这些数据进行处理将结果实时传到LCD显示。主要包括3部分内容:数据处理算法、键盘中断子程序,显示处理子程序。系统双机工作流程图如图5所示。
1 数据处理算法
本系统主要用到以下算法:①低通滤波处理算法;②捕获单元高精度测频算法;③自适应调整采样间隔技术;④FFT算法的谐波分析。具体算法及代码请参阅《今日电子》网站本文章完整版。
2 键盘中断子程序
为满足系统实时性要求,完成键盘操作的实时响应,本系统采用外部中断方式对键盘扫描,完成命令形成与标志位设置功能。键盘中断子程序流程图如图6所示。
3 LCD显示子程序
LCD的显示分为信息区与显示区两部分。其中信息区包括固定信息(显示烟台大学DSP实验室等),显示区包括各相频率值与谐波波形的显示。
实验结果
本系统采样频率为fs=6400Hz,捕获单元测频结果和FFT算法得到各次谐波的幅值分别如表1和表2所示。
误差分析
经过分析以上各参数可看出:当频率是50Hz左右时,最大误差不超过0.01Hz,谐波分析的19次谐波呈波次越高幅度越小的趋势,并且所得各次谐波幅度比较符合实际情况。由于本系统采用了自适应调整采样间隔技术来实现同步采样,所以保证了参数的测量精度。
结束语
本文介绍了一种电力系统谐波分析仪,采用了DSP+DRAM+DSP的双处理器协同工作结构,通过双机中断交互式协调工作的模式快速的进行双机通信,可满足高速数据采集与传输的要求。由于采用了同步采样技术、自适应调整采样间隔技术和补零防频谱泄露技术,可以实现较为准确的谐波分析,便于工程应用,具有较大的实际应用价值。
作者:烟台大学光电信息学院 王军东 刘昌伟 马金臣
来源:今日电子/21ic
上一篇:基于嵌入式技术的温度测量系统设计
下一篇:基于数字倾角测量仪的设计