- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
无线传感器网络数据融合技术
关于数据融合树的构造,可以转化为最小Steiner树来求解,它是个NP Com-plete完各难题。文中给出了三种不同的非最优的融合算法。
①以最近源节点为中心(center at nearest Source,CNS):以离基站或汇聚节点最近的源节点充当融合中心节点,所有其他的数据源将数据发送到该节点,然后由该节点将融合后的数据发送给基站或汇聚节点。一旦确定了融合中心节点,融合树就基本确定下来了。
②最短路径树(shortest paths tree,SPT):每个源节点都各自沿着到达基站或汇聚节点最短的路径传输数据,这些来自不同源节点的最短路径可能交叉,汇集在一起就形成了融合树。交叉处的中间节点都进行数据融合。当所有源节点各自的最短路径确立时,融合树就基本形成了。
③贪婪增长树(greedy incremental tree,GIT):这种算法中的融合树是依次建立的。先确定树的主干,再逐步添加枝叶。最初,贪婪增长树只有基站或汇聚节点与距离它最近的节点存在一条最短路径。然后每次都从前面剩下的源节点中选出距离贪婪增长树最近的节点连接到树上,直到所有节点都连接到树上。
上面三种算法都比较适合基于事件驱动的无线传感器网络的应用,可以在远程数据传输前进行数据融合处理,从而减少冗余数据的传输量。在数据的可融合程度一定的情况下,上面三种算法的节能效率通常为:GIT)SPT)CNS。当基站或汇聚节点与传感器覆盖监测区域距离的远近不同时,可能会造成上面算法节能的一些差异。
(2)独立的数据融合协议层
无论是与应用层还是网络层相结合的数据融合技术都存在一些不足之处:为了实现跨协议层理解和交互数据,必须对数据进行命名。采用命名机制会导致来自同一源节点不同数据类型的数据之间不能融合;打破传统各网络协议层的独立完整性,上下层协议不能完全透明;采用网内融合处理,可能具有较高的数据融合程度,但会导致信息丢失过多。
He等提出了独立于应用的数据融合机制(application independent data ag-gregatlon,AIDA),
其核心思想就是根据下一跳地址进行多个数据单元的合并融合,通过减少数据封装头部的开销,以及减少MAC层的发送冲突来达到节省能量的效果。AIDA并不关心数据内容是什么,提出的背景主要是为了避免依赖于应用的数据融合(application dependent data aggregatton,ADDA)的弊端,另外还可以增强数据融合对网络负载的适应性。当负载较轻时,不进行融合或进行低程度的融合;负载较高或MAC层冲突较重时,进行较高程度的数据融合,如图3所示,AIDA的基本功能构件主要分为两大部分:一个是网络分组的汇聚融合及取消汇聚融合功能单元,另外一个是汇聚融合控制单元。前者主要是负责对数据包的融合和解融合操作,后者是负责根据链路的忙闲状态控制融合操作的进行,调整融合的程度(合并的最大分组数)。
图3 AIDA的基本构件
在介绍AIDA的工作流程之前,比较一下数据融合不同方法的几种结构设计。传统的ADDA存在网络层和应用层间的跨层设计,而AIDA是增加了独立的界于MAC层和网络层之间数据融合协议层。前面提到过分层和跨层数据融合各有自己的利弊。当然,也可以将AIDA和ADDA综合起来应用,如图4所示。AIDA的提出就是为了适应网络负载的变化,可以独立于其他协议层进行数据融合,能够保证不降低信息的完整性和不降低网络端到端延迟的前提下,减轻MAC层的拥塞冲突,降低能量的消耗。
图4 数据融合不同方式的几种结构设计
AIDA的工作流程主要包括以下两个方向的操作:发送和接收。
发送主要是指从网络层到MAC层的操作,网络层发来的数据分组进入汇聚融合池,AIDA功能单元根据要求的融合程度,将下一跳地址相同的网络单元(数据)合并成一个AIDA单元,并送到MAC层进行传输。何时调用融合功能单元以及融合程度的确定都由融合控制单元来决定。
接收操作主要是从MAC层到网络层,将MAC层送上来的AIDA单元拆散为原来的网络层分组单元并送交给网络层。这样可以保证协议的模块性,并允许网络层对每个数据分组可以重新路由。
来源:维库开发网