• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 基于CPLD的多次重触发存储测试系统设计

基于CPLD的多次重触发存储测试系统设计

录入:edatop.com    点击:

(3)多次重触发模块 当外界多次重触发信号m_tri到来后。经D触发器产生的open信号变为高电平,计数器开始计数时钟信号ff_dz,每计8 KB后停止计数,并产生清零信号clr对open信号清零,等待下次触发信号。由时钟信号ff_dz和open信号控制产生的时钟信号clkl作为写存储器时的推地址信号和写信号,open信号取反后接至存储器使能端。

(4)FIFO地址发生模块CPLD对FIFO的地址控制由时钟模块ff_dz信号产生,在时钟信号ff_dz的下降沿开始推FIFO地址。

(5)存储器地址发生模块 多次重触发模块产生clkl信号作为存储器的推地址信号m_dz推地址,将转换数据写入存储器,写满8 KB后停止写操作,等待下次触发信号。存储器存满512。KB后停止推地址和写操作,等待计算机读数。读数时,计算机每向CPLD发送1个读数脉冲,地址信号向前推进1位,CPLD就从存储器中对应的地址单元读取1个数据。

(6)存储器计满模块 当多次重触发信号m_tri到来后,open信号变为高电平,计满8 KB后变为低电平,等待下次触发信号。因此用计数器计数open信号下降沿,计满64个后存储器满信号tc变为高电平。

3.2 CPLD总体控制电路仿真及分析

图3为CPLD总体控制电路仿真图。图3中触发信号m_tri产生3次,由nopen信号看出存储器选通3次,由存储器地址信号m_addr的变化可看出存储器记录每个触发信号8 KB,并不断更新FIFO的数据。第1个触发信号m_tri到来后,nopen信号变为低电平即选通存储器。这时产生存储器的推地址信号和写信号m_dz信号,并且在下降沿时将推地址给存储器,存储器在低电平期间进行写操作。触发信号m_tri到来后计满8 KB,nopen信号产生高电平不选通存储器,且存储器的推地址信号和写信号m_dz变为高电平。

4 实验验证

通过实验验证该测试系统功能。实验中给测试系统加载8次触发信号,连续采集8次。由于该系统设计最多可以采样64次,如果重触发信号次数未达到64次,需手动给测试仪一个强制读数信号使得仪器采样结束。多次重触发信号8次有效后,手动强制读数信号使得仪器结束采样,通过上位机软件判断采集到的波形幅值和手动调节的幅值是否对应。若对应,表明系统采样正常。

实验步骤:测试仪接通电源,此时测试仪采样状态指示灯的红灯亮,和计算机接上编程读数线,打开编程界面,设置多次重触发的采样频率,其他选项均采用默认设置,编程完成后,拔掉编程读数线,测试仪上电(ON=0),红灯开始闪烁,将电荷校准仪的输出接到测试仪面板上的通道端,设置电荷校准仪的输出波形为正弦波,电荷量为2 000 PC,输出信号,给系统一个触发信号(M_TRI=1),红灯闪烁一段时间后停止闪烁,表明系统第一次采样完成,这时调节电荷校准仪的输出电荷量为4 000 PC。再给系统一个触发信号,重复前面过程,每次采样完成后改变电荷量,直到绿灯亮,和计算机连上编程读数线,通过上位机软件读取数据,待数据读取完毕,测试仪掉电(OFF=0),断开测试仪电源。图4为多次重触发波形。对图4中的数据进行转换和处理得到实测的电荷量值如表1所示,从表1看出,采集到的波形幅值与调节的顺序一致,系统设计符合要求。

5 结论

本文设计的基于CPLD的多次重触发存储测试系统性能较稳定,测量精度较高,能在高冲击等恶劣环境下正常工作,并且满足系统的低功耗、微型化要求,实现不失真采样存储信号。此系统能够实时记录多次重触发信号,每次信号的记录均有负延迟,读取数据时,无需程序调整,即可准确复现记录波形,因此存储测试技术在多个瞬态信号的测量中具有广阔前景。

作者:巩林萍,靳鸿,祖静 中北大学   来源:电子设计工程

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:NI ELVIS在数字电子技术实验中的应用
下一篇:I系列LSE应用工作原理

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图