• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 数字滤波技术在精密测量仪表中的应用研究

数字滤波技术在精密测量仪表中的应用研究

录入:edatop.com    点击:

3.3 实验结果

用5520A多功能校准源输出30 kHz,100~10 mV交流电压,选择ZJL801纳伏电压标准装置100mV量程档分别进行未消除零点偏移和已消除零点偏移的测量实验。实验结果如表2所示。

3.4 结果分析

表2中,已消除零偏后的测量值与未消除零偏的测量值比较,并不完全按给定的数学模型构成数据采集值与零偏经验值相减的关系,只是近似与数学模型相符。这是因为在零偏经验值中包含了微小的输入短路本机噪声在内,与所采集的数据不构成相减的关系,此因素影响不大,主要原因是零偏在小范围内漂移,放大倍数也存在一定的偏差,所以测量结果与期望值不完全一致。但是,从测量结果来看,经零偏滤波后的测量值,其测量精度已有明显改善,能够达到预期效果,这种滤波方法是基本合理的。

4 输入短路本机噪声影响的消除

4.1 数学模型

根据噪声的特性分析,噪声电压的平均值一般为零,噪声对电压测量的影响与被测电压通常构成均方根的关系。要消除输入短路本机噪声的影响,可建立以下数学模型:

式中:y为电压测量值,x为所采集一组数据的平均电压值,k为输入短路本机噪声电压经验值。

4.2 经验值的确定

本机噪声小是ZJL801纳伏电压标准装置的主要特点之一,通过实验可测出主机输入时的输入短路本机噪声电压在O.74~1.45 nV之间,取经验值为1.0 nV。前置输入时的输入短路本机噪声电压在0.15~0.55 nV之间,取经验值为O.4 nV。

4.3 实验结果

4.3.1 主机lμV量程档1 nV~10 nV实验结果

用5520A多功能校准源输出频率为30 kHz、幅度为100~lO mV电压,经1 000∶1和l 0000∶1的组合同轴衰器衰减后输入到ZJL801纳伏电压标准装置(带通滤波器设置为300 Hz~100kHz,时间常数设置为30 s),分别进行输入短路本机噪声滤波前和滤波后1~10 nV衰减电压测量。测量结果如表3所示。

4.3.2前置输入100 nV量程档l~10 nV实验结果

按照以上相同方法和步骤,将衰减电压经前置超低噪声放大器输入进行相同测量。测量结果如表4所示。

4.4 结果分析

在表3和表4中的测量值是测量结果在一定范围内波动的中心值,如10.00nV是9.83~10.17 nV波动范围的中心值。严格来说,表中数据小数点后只宜保留一位小数,但为了便于计算和比较,这里按两位小数读取估计值。

从主机1μV量程档实验结果分析,因本机噪声相对较大,滤去本机噪声后的测量结果比未滤去本机噪声的测量结果的测量精度有明显改善。按建立的数学模型计算得到的值与测量结果基本相符。

从前置输入100nV量程档实验结果分析,因本机噪声相对较小,被测电压在4 nV以上时,滤波效果不明显;只有被测电压在3 nV以下时,滤去本机噪声后的测量结果比未滤去本机噪声的测量结果的测量精度有明显改善,这与数学模型计算结果也是基本一致的。表4中个别数据出现滤波后的结果大于滤波前的结果,这是因为被测量相对较大,按数学模型计算,滤波前后,数值基本不变,滤波后数值略微偏大是因为零点漂移引起的,与本滤波方法无关。

5 结束语

本文针对高精密测量仪表的误差特性,采用了平均值滤波、零点偏移滤波和本机噪声滤波等3种数字滤波方法,分别消除因噪声或干扰产生的随机误差和因元器件的性能及热噪声的影响造成的零点偏移、本机噪声等系统误差。通过分析和实验证明,数字滤波能够改善测量仪表的性能,提高测量精度。

来源:维库开发网

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:基于JTAG仿真器的DSP中断检测处理技术
下一篇:数据中心测试面临的挑战

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图