• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 利用TDR (时域反射计)测量传输延时

利用TDR (时域反射计)测量传输延时

录入:edatop.com    点击:

摘要:随着时钟速率的提高,利用高速示波器有源探头测量延时的传统方法很难获得准确结果。这些探头成为高速信号通路的一部分,并造成被测信号的失真,引入误差。探头还必须直接置于器件引脚,以消除PCB (印刷电路板)引线长度产生的延时误差,满足探头位置的这一要求是困难而复杂的过程。本文介绍了如何利用TDR (时域反射计)测量降低探头误差的方法,有助于提高传输延时测量精度。

分析方法

本文基于以下三个前提:

1.利用TDR (时域反射计)减小探头误差。TDR通常用来测量信号通路长度与阻抗变化的关系。TDR也是测量传输延2.时的重要工具。

2.避免直接探测。由于加载的原因,有源探头会使测量变得复杂,并引入误差。

3.利用一个实例演示这一方法。本文将以MAX9979为例,该芯片为高速引脚电子电路,适合于ATE系统。芯片内部集成了双路高速驱动器、有源负载以及工作在1Gbps以上的窗比较器。

此处介绍的方法适用于任何高速器件。

TDR原理

TDR测试方法中,沿信号通路传输高速信号边沿,并观察其反射信号。反射能够说明信号通路的阻抗以及阻抗变化时信号延时的变化,TDR测试的简单示意图如图1所示:

图1. TDR原理,TDR测量基于反射系数ρ,其中ρ = (VREFLECTED/VINCIDENT)。最终,ZO = ρ × (1 + ρ)/(1 - ρ)。从图1可以得到两个重要概念:

1.TDLY是我们将要测量的PCB (印刷电路板)引线延时。

2.ZO是被测PCB引线的阻抗。

仪器和*估板

为了测量纳秒级的延时,需要非常快的脉冲发生器、高速示波器以及高速探头。我们也可以利用具有TDR测量功能的Tektronix? 8000 (图2)系列示波器(TDS8000、CSA8000或CSA8200),配合80E04 TDR采样模块使用。本文采用MAX9979EVKIT (*估板)、HEWLETT Packard 8082A脉冲发生器和TDS8000/80E04进行演示。图3所示为MAX9979EVKIT部分电路。可以选择使用任何具有TDR功能的高速示波器和任何高速差分脉冲发生器,同样能够获得相似结果。

图2. Tektronix TDS8000系列具有采样模式的示波器

图3. MAX9979EVKIT (部分)

分析中将进行以下测量:

1.从PCB的SMA边缘连接器DATA1/NDATA1至MAX9979 IC输入引脚DATA1/NDATA1的延时。从MAX9979的DUT1 (被测器件)输出通过SMA连接器J18的延时。

2.连接DUT1输出至CSA8000的测试电缆延时。

3.从DATA1/NDATA1输入至DUT1输出,通过电缆到达CSA8000的总延时。

4.最后,计算MAX9979的实际延时。

DATA1/NDATA1输入建模

由于人们对TDR响应比较困惑,我们首先利用SPICE仿真器构建输入延时的模型。然后我们将仿真结果与实际测量进行比较,参见图4。

图4. 等效输入原理图和最终仿真模型

图4注释:

1.PCB引线设定为6in长,阻抗为65Ω。实际上,这是DATA1/NDATA1 PCB引线的真实阻抗。理想情况下为50Ω,但我们从TDR测量结果将会看到该值为63Ω。

2.NDATA1输出端接至地。由于DATA1和NDATA1对称,而且距离MAX9979引脚的长度相同,所以仅测量DATA1的PCB引线。

3.对信号发生器的12in电缆进行建模,但实际传输延时测量证明并不需要这一建模。

来源:中国电子应用网

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:基于柔性测试技术的位置传感器标定与检测系统平台的设计
下一篇:基于FPGA的时间间隔测量模块设计

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图