• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 光纤大电流传感器研究

光纤大电流传感器研究

录入:edatop.com    点击:

2 系统结构

由式(4)可知,获得P0,P即可得到被测电流值I。系统构框图如图3(略)所示。

其中,激光器采用恒流驱动,提供32 mA恒定电流。通过出光功率自动控制电路,实现光功率反馈,将探测到的光电信号与激光器的驱动电流比较,以达到及时调整激光器工作光功率抖动的目的。

光检测及放大部分电路实现了光/电转换,并且对电信号放、滤波,以及分离直流信号和交流信号。原理框图如图4所示。

信号采集处理部分实现对直流信号和交流信号分别采集,进行处理。记录下未通电流时的直流信号U0,作为基准值,U分别为带有电流直流、交流信息的检测值,经过运算分别出被测电流I的直流分量和交流分量。

3 实验结果及分析

在实验的传感头内孔径D1=2 cm,外环直径D2=5 cm,底座(即图2中的plinth)厚度h=1.1 cm;准直器是用能通过635 nm红光的光纤和聚焦透镜制成;磁光晶体厚度d=2 cm;verdet常数v=-1.17×10-3rad/A;光源输出功率为1 mW;实验中分别用连续电流和脉冲电流对其进行检测。实验时把器件一端接在光源输出端,另一个接在输入端,并把通电导线从缺口横穿过去就可开始测试。

3.1 用连续交流电测实验

在用连续交流电测实验中通过渎取光纤电流传感器输出的电压与用标准器件测得的电流进行比较,并把所得的电压值等效为光纤电流传感器的电流值。在实验中标准器件使用的是电流互感器。表1是在某测试机构中测得的数据。

将表1中的电流值作为横坐标,电压值作为纵坐标绘制成曲线,如图5所示。可以看出,电压与电流是近似成正比的。

从图5的数据可看到在100~3 000 A范围内,系统具有良好的线性度。

3.2 用脉冲电流测实验

由于一般测试机构中很少测试上万安的交流电,图6和图7是在某测试院中用脉冲电流实验时在示波器上显示的波形图,上面曲线是通过光纤电流传感器得到的波形,图中曲线是通过电流互感器得到的波形。

图6是用B=45°、峰值为32 kA的脉冲电流实验得到的图像。从图中可看出光纤电流传感器在10 kA左右的波形突然向下凹陷。经检验是所测电流超过其最大测量范围所致,即出现饱和失真。

图7是B=80°、峰值为32 kA的脉冲电流实验得到的图像。在图中,用光纤电流传感器测得的电流波形曲线没有失真,并且与用电流互感器测得的波形线较好的吻合,说明32 kA的电流在其动态范围之中,并且响应时间小于10μs。

综合上述实验,系统在小电流测试时具有较好的线性度和稳定性。在大电流测试中,第一次测试出现了饱和失真,第二次用增大角B的方法解决了失真的问题,并且动态范围较大,响应时间短。其实.由式(4)还可看出,通过增大verdet常数v,或磁光晶体长度L还可以使测量范围变得更大,但这就需要重新定制、加工磁光晶体,使成本更高和制作时间更长。故第一次出现饱和失真后选择了增大角B的方法。

4 结 语

在此用磁光晶体作材料,以法拉第旋光效应为原理设计和制作了光纤电流传感器的传感头,并用所设计的传感头搭建了实验系统和进行大电流的检测实验。实验结果表明,该设计的传感器在高电压下能较准确实现32 kA电流的测量。而且该器件结构简单、使用方便、响应时间短,具有较好的实用价值。

来源:维库开发网

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:可精确测距的低成本超声子系统
下一篇:远程地面传感器系统中传输电路的设计

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图