- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
LabVIEW 编译器深层解析
首先,Trim Whitespace.vi被内联到调用VI,如图4所示。现在,不可达代码与死码删除运算可以简化代码。第一个条件结构将总是执行相同的分支,因为输入的是一个恒定值。因此,其余的分支可以同整个第二个条件结构一起移走,因为它们从不执行。循环不变式代码移动将匹配模式基元(Match Pattern primiTIve)移出循环框,确保其只被执行一次,如图5所示。
图 4. subVI内联到调用程序,导致一个 DFIR图表等价于该 G代码
图 5. 一次执行产生优化的 DFIR图表
DFIR后端变换
在DFIR图表被分解与优化后,后端变换开始执行。这些变换评估并注解DFIR图表,为最终将DFIR图表降低为LLVM IR做好准备。聚丛程序负责将节点归为簇,这些簇可以并行运行。替代程序识别何时分配的数据可以重新使用,何时必须制作副本。在替代程序运行后,分配程序预留出VI执行所需的内存空间。最后,编码发生器负责将DFIR图表转化为可执行的机器指令用于目标处理器。
LLVM提供一种底层的中间表示
LLVM是一种多用途,高性能,源代码开放的构架,原来是伊利诺斯州州立大学的作为研究项目而发明的。LLVM因为其灵活性,简洁的API以及不受许可的限制,被广泛用于学术研究与工业生产。在LabVIEW 2010版本,LabVIEW编码生成器使用LLVM来生成目标机器码。在从DFIR图表创建编码流后,LabVIEW访问每个指令并创建一个等价的 LLVM表示。软件会激活多种优化扫描,最终,LLVM准时制(JIT)构架在内存中创建可执行的机器指令。现在LabVIEW可以使用LLVM来执行指令综合,跳变线程,聚合标量替代(scalar replacement of aggregates),条件扩展,尾端调用删除,循环不变代码移出,死码删除以及循环展开。
DFIR与LLVM协同工作
DFIR是高级的IR具有并行性,而LLVM是底层IR,具有目标机器特性的认知,二者协同工作以优化开发者为处理器结构而编写的LabVIEW代码,它们能够在处理器上被执行。
– Chris Wood
Chris Wood是NI公司LabVIEW方面的传感器软件工程师。他拥有德克萨斯A&M大学计算机工程专业的学士学位。
– Craig Smith
Craig Smith是NI公司的首席软件工程师。他拥有德克萨斯A&M大学计算机科学专业的学士与硕士学位。
上一篇:通过LabVIEW
形化开发平台有效优化多核处理器环境下的信号处理性能
下一篇:合理使用NI
LabVIEW
2010和选择硬件,使原型设计更有效