• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 超低电压能量收集器采用热电发生器为无电池无线传感器供电

超低电压能量收集器采用热电发生器为无电池无线传感器供电

录入:edatop.com    点击:

在该例中,散热器和 TEG 的热阻确定了总温差 (ΔT) 的哪一部分存在于 TEG 的两端。该系统的简单热模型示于图 11。假定热源 (RS) 的热阻可忽略不计,如果 TEG 的热阻 (RTEG) 为 2ºC/W,散热器的热阻为 8ºC/W,那么落在 TEG 上的 ΔT 仅为 2ºC。在 TEG 上的温度只有区区几 ºC 的情况下,其输出电压很低,此时 LTC3108 能够依靠超低输入电压工作的重要性就凸显出来了。

图 11:TEG 和散热器的热阻模型

请注意:由于较大的 TEG 其表面积增大了,所以大型 TEG 通常比小型 TEG 热阻低。因此,在那些于 TEG 的一端采用了一个较小散热器的应用中,较大的 TEG 上的 ΔT 有可能小于较小的 TEG,故而未必会提供更多的输出功率。无论在何种情况下,都应采用具有尽可能低热阻的散热器,以通过最大限度地提高 TEG 上的温度差来实现电输出的最大化。

选择最佳的变压器匝数比
对于那些可提供较高温度差 (即较高的输入电压) 的应用,可以采用一个匝数比较低 (例如:1:50 或 1:20) 的变压器以提供较高的输出电流能力。作为经验法则,假如最小输入电压在加载时至少为 50mV,则建议采用 1:50 的匝数比。倘若最小输入电压至少为 150mV,那么就建议使用 1:20 的匝数比。文中讨论的所有匝数比在市面上均有现成可售的 Coilcraft 器件 (包括特定器件型号在内的更多信息请查阅 LTC3108 的产品手册)。图 12 中的曲线示出了在采用两种不同的变压器升压比及两种不同尺寸的 TEG 时,LTC3108 在某一温度差范围内的输出功率能力。

图 12:对于两种 TEG 尺寸及两种变压器匝数比的 LTC3108 输出功率
与 ?T 的关系曲线 (VOUT = 5V)

脉冲负载应用
由 TEG 供电的典型无线传感器应用如图 13 所示。在这个例子中,TEG 上至少有 2ºC 的温差可用,因此选择 1:50 的变压器升压比,以在 2ºC 至 10ºC ΔT 的范围内实现最高的输出功率。当采用图示的 TEG (边长 40mm 的方形器件,具有 1.25Ω 的电阻) 时,该电路能够依靠低至 2ºC 的温差启动并对 VOUT 电容器进行充电。请注意,在转换器的输入端上跨接了一个大容量的去耦电容器。在输入电压与 TEG 之间提供良好的去耦可最大限度地减小输入纹波、提升输出功率能力并在尽可能低的ΔT 条件下启动。

图 13:由一个 TEG 来供电的无线传感器应用

在图 13 所示的例子中,2.2V LDO 输出负责给微处理器供电,而 VOUT 利用VS1 和 VS2 引脚设置为 3.3V,以给 RF 发送器供电。开关 VOUT (VOUT2) 由微处理器控制,以仅在需要时给 3.3V 传感器供电。当VOUT 达到其稳定值的 93% 时,PGOOD 输出将向微处理器发出指示信号。为了在输入电压不存在时保持运作,在后台从 VSTORE 引脚给 0.1F 存储电容器充电。这个电容器可以一路充电至高达 VAUX 并联稳压器的 5.25V 箝位电压。如果失去了输入电压电源,那么就自动地由存储电容器提供能量,以给该 IC 供电,并保持 VLDO 和 VOUT 的稳定。

在本例中,根据下面的公式来确定 COUT 存储电容器的大小,以在 10ms 的持续时间内支持15mA 的总负载脉冲,从而在负载脉冲期间允许 VOUT 有 0.33V 的下降。请注意,IPULSE 包括 VLDO 和 VOUT2 以及 VOUT 上的负载,但可用的充电电流未包括在内,因为与负载相比,它可能非常小。

COUT(μF) = IPULSE (mA) • tPULSE (ms) / dVOUT

考虑到这些要求,COUT 至少须为 454μF,因此选择了一个 470μF 的电容器。

采用所示的 TEG,在 ΔT 为 5ºC 时工作,那么 LTC3108 在 3.3V 时可提供的平均充电电流约为 560μA。利用这些数据,我们可以计算出,首次给 VOUT 存储电容器充电需要花多长时间,以及该电路能以多大的频度发送脉冲。假定在充电阶段中 VLDO 和 VOUT 上的负载非常小 (相对于 560μA),那么 VOUT 最初的充电时间为:

tCHARGE = 470μF • 3.3V / 560μA = 2.77s

假定发送脉冲之间的负载电流非常小,那么一种简单估计最大容许发送速率的方法是用可从 LTC3108 获得的平均输出功率 (在本例情况下为 3.3V • 560μA = 1.85mW) 除以脉冲期间所需的功率 (在本例情况下为 3.3V • 15mA = 49.5mW)。收集器能够支持的最大占空比为 1.85mW / 49.5mW = 0.037 或 3.7%。因此最大脉冲发送速率为 0.01 / 0.037 = 0.27s 或约为 3.7Hz。

请注意,如果平均负载电流 (如发送速率所决定的那样) 是收集器所能支持的最大电流,那么将没有剩余的收集能量用于给存储电容器充电 (如果需要存储能力的话)。因此,在这个例子中,发送速率设定为 2Hz,从而留出几乎一半的可用能量给存储电容器充电。在该场合中,VSTORE 电容器提供的存储时间利用以下公式来计算:

tSTORE = 0.1F • (5.25V - 3.3V) / (6μA + 15mA • 0.01 / 0.5) = 637s

上述计算包括 LTC3108 所需的6μA静态电流,而且假定发送脉冲之间的负载极小。在此场合中,一旦存储电容器达到满充电状态,它就能以 2Hz 的发送速率支持负载达 637s 的时间,或支持总共 1274 个发送脉冲。

利用后备电池的超低功率应用
有些应用或许没有脉冲负载,但却可能需要连续工作。传统上,此类应用由一个小型主电池 (比如:3V币形锂电池) 来供电。假如功率需求足够低,那么这些应用就能够利用热能收集来连续供电,或者可以借助热能收集来极大地延长电池的使用寿命,从而降低维护成本。

图 14 示出了一种利用后备电池来驱动一个连续负载的能量收集应用。在该例中,所有的电子线路均全部由 2.2V LDO 输出来供电,且总电流消耗小于 200μA,只要 TEG 上至少存在 3ºC 的温度差,LTC3108 就能连续地给负载供电。在这些条件下,电池上没有负载。当可用的收集能量不够时,3V锂电池将无缝地"接管"并给负载供电。


 

图 14:具有后备电池的能量收集器

能量存储替代方案
对于那些选用可再充电电池来替代主电池以提供备份或能量存储的应用,图 14 中的二极管可以去掉,并用可再充电的镍电池或锂离子电池 (包括新型可再充电薄膜锂电池) 来替换锂电池。如果采用的是可再充电的镍电池,则其自放电电流必须小于 LTC3108 所能供应的平均充电电流。如果选用锂离子电池,则需要增设额外的电路以保护其免遭过度充电和过度放电的损坏。另外还有一种存储替代方案就是具有 5.25V 额定电压的超级电容器,例如:Cooper-Bussman PB-5ROH104-R。与可再充电电池相比,超级电容器的优势在于拥有更多的充 / 放电次数,而缺点则是能量密度低得多。

热量收集应用需要自动极性
有些应用 (例如:无线 HVAC 传感器或地热供电的传感器) 对能量收集功率转换器提出了另一种独特的挑战。此类应用要求能量收集电源管理器不仅能够依靠非常低的输入电压来工作,而且能以任一极性工作,因为 TEG 上的 ?T 的极性可能改变。这是一个特别棘手的难题,而且,在几十或几百 mV 的电压条件下,二极管桥式整流器不是合适的选项。

LTC3109 是唯一适合克服这种从任一极性的能量源收集能量之挑战的器件。LTC3109 运用具 1:100 升压比的变压器,能以低至 ±30mV 的输入电压工作。LTC3109 与 LTC3108 的功能相同,包括一个 LDO、一个数字可编程的输出电压、一个电源良好输出、一个开关输出和一个能量存储输出。LTC3109 采用 4mm x 4mm 20 引脚 QFN 封装或 20 引脚 SSOP 封装。图 15 显示了 LTC3109 在自动极性应用中的一个典型例子。如图 16 所示,该转换器的输出电流随 VIN 变化的曲线说明,该器件在任一极性的输入电压时,都能同样良好地工作。

图 15:自动极性能量收集器供电的无线传感器节点



图 16:图 15 中转换器的输出电流随 VIN 变化的曲线

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:降低设备功耗的方法 - 精确测量
下一篇:基于数据拟合的激光焊接焊缝 像表面缺陷检测

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图