• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 测试测量 > 技术文章 > 工业运动控制中的测量技术

工业运动控制中的测量技术

录入:edatop.com    点击:

电流和电压检测的测量技术与拓扑

除上文所述的系统功率和接地划分外,为检测电流和电压而实现的信号链还会因传感器选择、电流隔离要求、ADC选择以及系统集成的不同而有所差异。为实现高保真测量而进行的信号调理并非易事。例如,在如此嘈杂的环境中恢复小信号或传送数字信号就非常具有挑战性,而隔离模拟信号则是更大的挑战。在许多情况下,信号隔离电路会引起相位延迟使得系统动态性能受限的。相位电流检测尤其困难,因为该节点连接的电路节点与功率级(逆变器模块)核心中的栅极驱动器输出的节点相同,因此在隔离电源和开关瞬变方面的需求也相同。通常根据以下三个关键因素来确定需在电机控制系统中实施的测量信号链(技术、信号调理和ADC):

1.决定测量需求的系统中的点或节点。

2.电机功率水平以及最终选择的传感器(本身是否具有隔离功能)。传感器选择在很大程度上影响着ADC的选择,包括转换器架构、功能以及模拟输入范围。

3终端应用。这可推动检测信号链中对高分辨率、精度或速度的需要。例如,在较大的速度范围内实现不带传感器的控制要求进行更多、更频繁、更精确的测量。终端应用还会影响对ADC功能的要求。例如,多轴控制可能需要通道数更高的ADC.

电流和电压传感器

电机控制中最常用的电流传感器为分流电阻、霍尔效应(HE)传感器以及电流互感器(CT)。虽然分流电阻具有隔离功能且会在电流较高时出现损耗,但是它们是所有传感器中最具线性、成本最低且适用于交流和直流测量的传感器。为限制分流功率损耗的信号电平衰减通常将分流应用限制为50 A或更低。CT传感器和HE传感器可提供固有的隔离,因此能够用于电流较高的系统。但是它们的成本更高,并且采用此类传感器的解决方案在精度上不及采用分流电阻的解决方案,这是由于此类传感器本身的初始精度较差或者在温度方面的精度较差。

电机电流测量位置和拓扑

除传感器类型外,还有许多可选的电机电流测量节点。平均直流链路电流即可满足控制需求,但是在更高级的驱动器中,电机绕组电流用作主反馈变量。直接相位绕组电流测量是理想的选择,可用于高性能系统。然而,在每个低位逆变器引脚上使用分流器或在直流链路中使用单个分流器可以间接测量绕组电流。这些方法的优势在于,分流信号全都以共用电源为基准,但是从直流链路提取绕组电流要求采样与PWM开关同步。采用以上任何一种电流检测技术均可进行直接相位绕组电流测量,但是必须隔离分流电阻信号。高共模放大器可提供功能隔离,但是人员安全隔离必须由隔离式放大器或隔离式调制器提供。



图4.隔离式和非隔离式电机电流反馈

图4展示了上述各类电流反馈选择。虽然只需选择其中一种即可进行控制反馈,但还可将直流链路电流信号用作备份信号以进行保护。

如前所述,系统功率和接地划分将决定需要的隔离分类,并从而判断出适用的反馈。系统的目标性能还会影响传感器选择或测量技术。纵观整个性能图谱,还可实现许多配置。

低性能示例:共用电位上的功率级和控制级,检测选项A或B

使用引脚分流是一种最经济实惠的电机电流测量技术。在本例中,功率级与控制级共享同一电位,不存在要处理的共模,并且选项A或选项B的输出可直接连接至信号调理电路及ADC.此类拓扑常见于微处理器中嵌有ADC的低功耗和低性能系统。

点击浏览:矢量网络分析仪、频谱仪、示波器,使用操作培训教程

上一篇:基于正交矢量放大的MRS信号采集模块设计----核磁共振信号采集模块的原理及分析
下一篇:高阻器件低频噪声测试技术与应用研究--用于聚合物钽电容的漏电流噪声研究

微波射频测量操作培训课程详情>>
射频和天线工程师培训课程详情>>

  网站地图