- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
RFID简介和发展
RFID 的出现可追溯至上世纪30年代,当然其基本技术无线电射频技术还可以追溯至1897年Guglielmo Marconi 发明无线电的时候。RFID 采用与无线电广播相同的物理原理来发射和接收数据。
RFID的基本前端系统一般由3个部分组成:
标签(tag)或者雷达收发器(transponder);
接收器(receiver)或者阅读器(reader);
天线。
而这些部件则有许多变体,基于不同的功率、发射范围和距离、天线设计、工作频率、数据容量、管理和操作软件、数据编码格式、空中接口和通信协议等等。这样,便出现了许多不同类型的系统,具有不同的特点和针对的应用范畴。
这些应用中涉及和影响到当今社会、生活、经济、军事、法律和文化的方方面面。而目前最热烈和最受关注的莫过于廉价标签在商品(货物)流通生命周期过程中的识别应用。
发展和趋势
早期
RFID技术很早就和军事联系在一起。在上世纪30年代,美国陆军和海军都面临着在陆地、海上和空中对目标的识别的问题。1937年,美国海军研究试验室(U.S. Naval Research Laboratory (NRL))开发了敌我识别系统(Identification Friend-or-Foe (IFF) system),来将盟军的飞机和敌方的飞机区别开来。这种技术后来在50年代成为现代空中交通管制的基础。并且是早期RFID技术的萌芽,而优先地应用在军事、实验室等。
早期系统组件昂贵而庞大,但随着集成电路、可编程存储器、微处理器、以及软件技术和编程语言的发展,创造了RFID技术推广和部署的基础。
60年代后期和70年代早期,有些公司(如Sensormatic 和Checkpoint Systems)开始推广稍微不那么复杂的RFID系统的商用,主要用于电子物品监控(electronic article surveillance (EAS)),即保证仓库、图书馆等等的物品安全和监视。这种早期的商业RFID 系统,称为1-bit 标签系统,相对容易构建、部署和维护。但是这种1比特系统只能检测被表示的目标是否在场,不能有更大的数据容量,甚至不能区分被标识目标之间的差别。
从检测到唯一性识别
因此早期的1bit系统只能作为简单的检测用途。
在70年代,制造、运输、仓储等行业都试图研究和开发基于IC的RFID 系统的应用。比如、工业自动化、动物识别、车辆跟踪等等。在此期间,基于IC的标签体现出了可读写存储器、更快的速度、更远的距离等优点。但这些早期的系统仍然是专有的设计、没有相关标准、也没有功率和频率的管理。
在80年代早期,更加完善的RFID 技术和应用出现,比如铁路车辆的识别、农场动物和农产品的跟踪。
90年代,道路电子收费系统在大西洋沿岸得到广泛应用,从意大利、法国、西班牙、葡萄牙、挪威,到美国的达拉斯、纽约和新泽西。这些系统提供了更完善的访问控制特征,因为它们集成了支付功能,也成为综合性的集成RFID应用的开始。
从90年代开始,多个区域和公司开始注意这些系统之间的互操作性,即运行频率和通信协议的标准化问题。只有标准化,才能将RFID的自动识别技术得到更广泛的应用。比如,这时期美国出现的E-ZPass 系统。
同时,作为访问控制和物理安全的手段, RFID 卡钥匙开始流行起来,试图取代传统的访问控制机制。这种称为非接触式的IC智能卡具有较强的数据存储和处理能力,能够针对持有人进行个性化处理,也能够更灵活地实现访问控制策略。
RFID的热潮和整合性应用
在上世纪末期,大量的RFID 应用指数般地试图扩展到全球范围。
在美国,Texas Instruments 则是这方面的推动先锋。TI从1991年开始建立德州仪器注册和识别系统(Texas Instruments Registration and Identification Systems (TIRIS))。该系统如今叫TI-RFid (Texas Instruments Radio Frequency Identification System),已经是一个主要的RFID应用开发平台。
在欧洲,EM Microelectronic-Marin 从1971年开始研究超低功率的集成电路。1982年,Mikron Integrated Microelectronics 开始了ASIC技术,并在1987年由其奥地利分公司开始开发识别和智能卡芯片。1995年,Philips Semiconductors 收购了Mikron Graz。如今EM Microelectronic 和Philips Semiconductors 是欧洲的主要RFID 厂商。
从技术上看,数年前,所部署的RFID应用基本上都是低频(LF) 和高频 (HF) 的被动式RFID技术。LF 和HF 系统都具有优先的数据传输速度和有效距离。因此,有效距离限制了可部署性。数据传输速度则限制了其可伸缩性。因此,90年代后期,开始出现甚高频(UHF)的主动式标签技术,提供更远的传输距离,更快的传输速度。基于此,重载的企业应用才开始使用这种技术,比如供应链管理中的托盘和包装跟踪、存货和仓库管理、集装箱管理、物流管理等等。并且逐渐试图成为合成的企业应用(包括ERP、SCM、CRM、EAM、B2B等等)的数据和语义基础。
从90年代末期到现在,零售巨头如Wal-Mart,Target,Metro Group 以及一些政府机构,如美国国防部 (DoD),都开始推进RFID应用,并要求他们的供应商也采用此技术。同时,标准化的纷争出现了多个全球性的RFID标准和技术联盟,主要有EPCglobal、AIM Global、ISO/IEC、UID、IP-X 等。这些组织主要在标签技术、频率、数据标准、传输和接口协议、网络运营和管理、行业应用等方面试图达成全球统一的平台。
RFID系统的组成
一个RFID 系统 通常有两个组件组成: (Figure 1.7):
收发器(transponder), 位于被识别的对象;
讯问器(interrogator)或者阅读器(reader),取决于设计和所采用的技术,可以是阅读或者读写设备。
阅读器通常包含一个射频模块(发射器和接收器),一个控制单元和一个与收发器的耦合单元。另外,某些阅读器还包含其他数据接口系统(RS 232, RS 485,TCP/IP等),以便将数据转发到其他系统I (PC, 机器人控制系统等)。
雷达收发器,表示RFID系统的实际数据载体,通常有一个耦合单元和一个电子芯片组成。(Figure 1.9)。雷达收发器通常不具备自身电源供应,当它不在质询器的质询范围时,整体呈被动状态。它只有在质询器的质询范围之内才被激活。激活雷达收发器的电力通过耦合单元传输给收发器,所需的数据和时钟脉冲也是如此。
13.56MHz NFC天线,13.56MHz RFID天线设计培训课程套装,让天线设计不再难
上一篇:基于物流仓储管理的RFID读写器设计
下一篇:RFID产品分类研究