• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > RFID和物联网 > RFID > 通用RF器件的邻道泄漏比ACLR来源

通用RF器件的邻道泄漏比ACLR来源

录入:edatop.com     点击:
可推导出器件的IM3与三阶输出交调截点(OIP3)之间的关系。本文介绍了估算ACLR的公式推导,ACLR是IM3的函数。

ACLR/IMD模型

为了了解RF器件的ACLR来源可以对宽带载波频谱进行模拟,相当于独立的CW副载波集合。每个副载波都会携带一部分总的载波功率。下图所示就是这样一个模型,连续RF载波由四个单独的CW副载波模拟,每个副载波的功率为总载波功率的四分之一。副载波以相同的间隔均匀地分布于整个载波带宽内。

图1中的绿线从左到右分别是副载波1、2、3和4。如果我们只考察左边的两个副载波(1和2),可以考虑RF器件中的任意IMD3失真引起的三阶IMD分量。三阶失真表现为这两个副载波两侧的低电平副载波,两个“绿色”副载波左边的第一个“红色”失真分量是这两个副载波的IMD3失真结果。

来自副载波1和3的IMD3分量在与载波1间距相同的频率处具有IMD3失真分量。这在载波频谱的左边产生第二个“红色” IM分量。同样,来自副载波1和4的IMD3生成的失真分量距离载波边缘更远。

注意这里还存在其它的IMD分量。副载波2和4产生的IM3分量直接叠加在副载波1和2产生的IMD分量上。这一累加效应会使距离RF载波边缘较近的IMD分量的幅值比距离RF载波边缘较远的IMD分量高,产生ACLR失真频谱中的“肩”特性。Leffel发表的一篇论文详细描述了来自多个副载波的IMD分量的这种累加。

通用RF器件的邻道泄漏比(ACLR)来源

这种方法可以定量地预测单独的IMD3失真分量的实际电平。通过增加模型中所使用的单独的副载波的数量可以增加模型的精度。多个宽带载波的ACLR性能与该模型中的ACLR非常像,模型中每个单独的宽带载波占据总的宽带载波带宽的一部分。在宽带载波的相邻部分,邻近最后一个载波的单载波的ACLR处于IMD3引起的失真响应的高肩位置。这导致多载波情形的ACLR比单载波系统的ACLR差得多。再次说明,这一结果可以量化后用以精确预测单宽带载波或多宽带载波的ACLR性能。这种基本方法只通过OIP3参数来预测RF器件的ACLR性能。

基本关系

器件的三阶互调分量和三阶交调截点之间的关系如下所示:

IMD3=(3×Pm)-(2×OIP3)

其中, Pm=双音测试例子中的每个单音功率,IMD3=三阶IM3,以dBm为单位,表示绝对功率,OIP3=三阶交调截点,表示绝对功率。

为了方便,可将该公式重写为相对IMD3,即与功率电平(P)有关的IM3性能。

IMD3=2×(Pm-OIP3)

其中, Pm=双音测试例子中的每个单音功率,IMD3=三阶IM3,以dBc为单位,表示相对功率,OIP3=三阶交调截点,表示绝对功率 。

例1:以总输出功率(Ptot)为+30dBm,OIP3为+45dBm的功率放大器(PA)为例。这样一个PA的相对IMD3可利用上述公式推导得出。但是,IM3双音测试中每个单音的输出功率比PA的总输出功率低3dB,即每个单音+27dBm。所以利用这些值来计算该PA的IMD3:

Ptot=+30dBm (PA的总输出功率)

Pm=(+30dBm-3dB)=+27dBm每个单音

OIP3=+45dBm

IMD3=2×(27-45)=-36dBc

13.56MHz NFC天线,13.56MHz RFID天线设计培训课程套装,让天线设计不再难

上一篇:如何确保蓝牙+Wi-Fi的服务质量
下一篇:CMOS多频段低噪声放大器设计

13.56MHz 线圈天线设计详情>>
手机天线设计培训教程详情>>

手机天线设计培训教程 国内最全面、系统、专业的手机天线设计培训课程,没有之一;是您学习手机天线设计的最佳选择...【More..

  网站地图