- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
硬件工程师必读攻略-如何通过仿真有效提高数模混合设计性(上)
三、仿真工具在数模混合设计中的应用
Ansoft公司的“AD-Mix Signal Noise Design Suites”数模混合噪声仿真设计软件包括:PCB 全波整版级信号完整性/电源完整性及电磁兼容/电磁干扰仿真设计和参数抽取工具SIwave; Ansoft工具和其他CAD、EDA设计工具的接口AnsoftLinks;电路、系统和多层平面电磁场设计仿真工具Ansoft DesignerSI/Nexxim;此外,还可以选配三维结构电磁场仿真和EMC分析工具Eminence。Ansft所有的工具都基于Windows设计风格,菜单和快捷键方式操作方便,可以直接从现有的电路设计软件中导入Ansoft的仿真软件,如Protel,PowerPCB,CR5000,Allegro,Boardstation和Expedition。而且各个模块数据通用,可以相互间直接调用。
仿真第一步,通过Ansoft Links导入PCB
数据到SIwave,设
置层叠材料特性
和厚度信息。当然
层厚和材料可以
在PCB工具中设定
好,直接导入
SIwave。
第二步,设置数字信号电压型干扰源。在Ansoft DesignerSI/Nexxim中,我们把电路中快速变化的数字信号输出模型调入,通常是IBIS模型。利用IBIS模型输出端口中给出的Vref,Rref和Cref参数,搭建激励和负载电路做瞬态时域分析。把时域分析的结果输出成频谱参数并以表格方式输出成文本文件,这个随频率变化幅度的扫频源就作为数字信号端的干扰源进行分析了。
第三步,同步开关噪声仿真。同步开关噪声作为数字电源脚的电压型干扰源,需要通过时域仿真确定噪声的幅度。首先我们在SIwave中提取包括同步信号的输出输入端口,VRM电源输出到IC的VCC管脚上的端口的多端口S参数模型,并将该模型输出到Ansoft DesignerSI/Nexxim中。有时候,器件VCC管脚可能不止一个,SIwave提供了创建Pin Group的功能,可以将多个相同电平的管脚合成一个Pin Group,然后添加端口。在Ansoft DesignerSI/Nexxim中,我们给所有的输入输出端口加上仿真模型,通常也是IBIS模型,在VRM电源输出添加理想直流源,然后探测VCC管脚上的电压波动,这个波动电压就是SSN。需要指出的是,通常SSN包括PCB和封装上耦合电感引起的电压波动,在这里仿真的只是由于PCB布线引起的部分,如果有IC封装的S参数模型,我们可以仿真完整的SSN,关于完整的SSN分析,请参看Ansoft与Xilinx公司合作推出的SSN仿真文章
http://www.xilinx.com/publications/xcellonline/xcell_57/xc_pdf/p092-094_57-sso.pdf或http://www.ansoft.com/workshops/converge/Xilinx_Ansoft.pdf
得到SSN的电压后,就可以在SIwave中的VCC管脚上添加独立的扫频源做干扰分析了。 所有干扰源确定后,我们就可以在SIwave中做扫频分析,用户可以在自己关心的位置,添加电压探头,输出实际干扰大小波形,也可以将整个PCB的电压波动以动画方式反映。
第四步,分析电流型干扰源。在SIwave中允许用户添加电流型的干扰源,与电压型干扰源类似,这个干扰源的幅度可以是不随频率变化的独立源,也可以是随频变变化的,只要能够给出变化特性。一般来讲,我们可以对已知DC电流大小的电源处添加独立电流源,分析他的电流分布密度和DC直流压降。对于频变的电流源,我们只能依靠在电源负载端添加端口,分析随频率变化的电源阻抗Z参数,来评估噪声的大小。
第五步,分析干扰源与被干扰对象之间的隔离度。除了以上干扰分析外,SIwave另外一个主要功能就是考察电源地的分割。在没有有源器件模型,无法给出干扰源幅度的情况下,考察数模之间的隔离度,也是解决问题的一个好方法。在SIwave中,在干扰源和受干扰对象点分别添加端口,分析S参数,看看隔离情况是否良好。我们在SIwave中,做出一个12x10inch的四层PCB例子,分别是顶层信号层,第二层电源,第三层GND和底层信号层,再分别模拟两个点作为干扰源和被干扰对象,分析各种情况下的隔离度。
1, 不分割时的隔离度
2, 分割后的隔离度
3, 单点连接是的隔离度
4, 不分割,添加20个电容(10个47uF, 10个0.1uF)后的隔离度
对于跨分割对数字信号的影响,由于传统的SI工具并不能分析,所以常常用设计规则来约束,致使很多情况布局布线困难,或者增加层厚和成本。SIwave可以精确分析跨分割信号的传输和反射特性,确定分割到底对那个频率的谐波有多大的作用。由于数字信号的频谱离散特性,只要这个波动频点不在谐波处,就不会对信号有太大的影响。此外,我们在跨分割的两个电源上PCB上添加去耦电容,也可以改变波动频点的位置,只要它落在数字信号的转折频率之外,也不会对信号有太大的影响。
下图是一个跨分割信号的S11和S21参数,添加去耦电容后的S11和S21参数比较。