- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
利用硅电视调谐器应对地面电视广播的挑战
硅调谐器的最早商用是在卫星电视市场。所有的卫星电视接收都要通过一个机顶盒。机顶盒的体积限制有利于硅调谐器的应用,因为这种调谐器具有很小的外形。
卫星电视标准和广播环境也非常适合硅调谐器的初期应用。卫星系统的频率范围只有一个倍频程(950到2,150 MHz),系统不需要处理地面电视和有线电视必须处理的模拟干扰。卫星系统的调制方案(QPSK和8-PSK)的技术难度也比许多地面电视和有线电视系统要低。
所有这些因素加起来使得卫星电视机顶盒制造商能够充分发挥硅调谐器的小体积、低功耗、低成本的优势。
地面电视和有线电视接收
其他环境,如地面和有线电视,要比卫星接收面临更多的挑战。例如,频率范围覆盖四个倍频程,从42到864MHz,而且地面电视还需要更高的动态范围。宽频带范围为滤波、本振(LO)频率产生和前端低噪声放大器(LNA)带来了很大的设计难度。另外,模拟频道接收也为过去的硅调谐器带来很大的挑战。
为了满足这些环境,前端LNA需要工作在一个较宽的频率范围内。这个宽范围意味着LNA的噪声系数、失真和增益都必须满足42MHz、864MHz以及之间的所有频率点的指标要求。这对集成电路来说难度不小。在其他窄带射频系统中,LNA经过优化可以完全满足感兴趣的较窄频率范围内的指标。这种优化的LNA在其他频段上很少能正常工作。而硅电视调谐器无法有此奢望。
图1:比美元的一角硬币还小的硅调谐器。这种调谐器的尺寸比所替代的分立式CAN调谐器要小得多。
射频滤波和本振产生
与绝大多数射频接收机一样,调谐器必须滤除来自有害频道的能量。如果不这样,后续的电路就必须具有极好的线性。在地面电视和有线电视调谐器中,有害信号的滤波是一项艰巨的任务。在窄带系统中,这种滤波通常在固定频率上实现。设计一个固定频率滤波器,无论是片上还是片外,都要比设计一个可以随时修改调谐频率的滤波器要容易得多。
有好几种调谐器架构采用固定频率的滤波技术,不过通常用的都是昂贵的片外声表面波(SAW)滤波器。采用这些SAW滤波器将大大增加系统的材料成本,而且还增加了实现调谐器所需的PCB面积。调谐器的架构一直在改进,如今内置的前端滤波器可以跟踪调谐后的频道,因此极大地减少了外部材料成本和所需的PCB面积。
在如此宽的频率范围上产生本振也有其自身特有的困难。如果一个电压控制振荡器(VCO)能够在整个范围内实现调谐,它将非常容易受噪声的影响。如果盲目地创建一组VCO,将使调谐器增加许多硅片面积(及因此而产生的成本)。现在有一种新电路被设计出来,它能够以高性价比的方式来克服这种调谐范围问题。
动态范围
动态范围是地面(即空气传播)系统中存在的问题。由于广播站距离接收机的距离是不定的,故每个频道的接收功率电平变化范围都很宽。
更糟糕的是,相邻频道的输入功率有很大的差异。这意味着,调谐器必须既能接收很低的功率信号,又能处理很大的功率干扰(即有害频道的信号),这些干扰非常靠近到达射频前端滤波器的有用信号频率。
模拟电视标准(NTSC,、PAL和SECAM)对以前的硅调谐器来说也有一定的技术难度。主要原因是,在模拟系统中,任何干扰都可以在屏幕上看得到。在模拟系统中没有数字编码和纠错机制。注入到射频前端的干扰信号可能造成屏幕上出现线条干扰。前端放大器中的AM到PM转换会导致颜色过亮而显示成错误的色彩,或者导致跨亮度(彩色信号被转换为亮度)问题。
过去,用来处理模拟电视信号的硅调谐器特别昂贵。如今硅调谐器已经得以长足发展,经过优化的硅调谐器已经可以解决这些系统问题。目前的设计已经能够充分利用硅调谐器带来的好处。
图2:CAN调谐器与硅调谐器尺寸的并列比较。