• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RF技术文章 > 天地共网WiMAX系统分析

天地共网WiMAX系统分析

录入:edatop.com    点击:

覆盖区距离固定时的系统性能分析

图3给出了H-BS与T-BS覆盖区内CNR值的累积分布函数(CDF)。按照前述条件,H-BS,T-BS均位于各自覆盖区的中心点,覆盖区边缘相距13km。通过图3中两条曲线我们看到:H-BS覆盖区内90%的区域CNR值都要好于T-BS覆盖区。由于采用了一些非视距(NLOS)通信技术,T-BS覆盖区边缘CNR均大于17dB,但基于平流层的H-BS,因为与用户站多为视距(LOS)通信,因此可得到更好的CNR值(均大于24dB)。

图3:H-BS,T-BS覆盖区CNR累积分布函数图。
图3:H-BS,T-BS覆盖区CNR累积分布函数图。

CINR值测量结果见图4、图5。从图4中可看到CINRH等值线为均匀圆形,而CINRT等值线为不均匀圆形分布。因为T-BS与测试站间的链路受测试站天线旁瓣干扰影响较大。从图5中我们看到,在左侧覆盖区内,CINRT等值线向中心点收缩,这就是H-BS信号对测试站干扰造成的结果。由于H-BS信号进入了测试站天线主瓣区域内,在不考虑阴影效应影响条件下,这种干扰还是比较大的。而在T-BS覆盖区的右侧,CINRT等值线没有变化,因为此区间内H-BS信号仅影响测试站天线旁瓣,干扰相对就小很多。

通过对图4、图5的对比,得出结论是:在同样发射功率前提下,位于平流层的H-BS不易受T-BS的干扰,而反之位于地面的T-BS易受H-BS干扰。

图4:H-BS覆盖区受T-BS干扰时的CINRH等值线分布。
图4:H-BS覆盖区受T-BS干扰时的CINRH等值线分布。

图5:T-BS覆盖区受H-BS干扰时CINRT等值线分布。
图5:T-BS覆盖区受H-BS干扰时CINRT等值线分布。

覆盖区边缘距离变化时的系统性能分析

为满足业务需求,网络结构会不断变化,基站调整、新站入网等因素都会影响到H-BS与T-BS覆盖区边缘距离的变化。在这种情况下,如何保证系统性能是天地共网WiMAX系统能否实现宽带接入无缝覆盖的关键。图6对这一情况做出了说明。我们设定最初H-BS与T-BS覆盖区边缘距离为40km,然后将T-BS覆盖区移向H-BS覆盖区,逐渐减少覆盖区边缘距离。当这一数值为负值时,说明两覆盖区出现了重叠。实验配置3个测试站,它们始终处于T-BS覆盖区左侧与右侧边缘及H-BS覆盖区左侧边缘。我们将对各覆盖区边缘的CNR,CINR,INR等值进行测量比较。

图6:覆盖区边缘性能比较。
图6:覆盖区边缘性能比较。

当覆盖区边缘(EOC)间距大于0时,CINRH变化很小。但当T-BS覆盖区与H-BS覆盖区出现重叠后,CINRH快速衰落到0dB以下,这是因为处于H-BS EOC的测试站在此时与T-BS的距离远小于到H-BS的距离,而T-BS信号产生的干扰迅速增强。当T-BS覆盖区完全包含在H-BS覆盖区内后,H-BS EOC位置的CINRH值又会快速恢复到原来水平。对于T-BS来说,在EOC间距逐渐减少的过程中,其左侧EOC的CINRT值总是低于右侧EOC的CINRT值,直至EOC间距等于-7km,既T-BS正好处于H-BS的左侧EOC上。这是因为H-BS的信号进入到了位于T-BS左侧EOC的测试站的天线主瓣区,从而引起了较大干扰,造成了CINR值的下降。

在图8中,我们给出了INR的变化情况,当T-BS覆盖区完全处于H-BS覆盖区之外时,H-BS EOC处的INRH值始终低于INRthresho。当EOC间距减少时,T-BS左侧EOC处的INRT值增大,而右侧EOC处的INRT值则低于INRthreshold。

图8:H-BS 与T-BS EOC减少时INR值的变化情况。
图8:H-BS 与T-BS EOC减少时INR值的变化情况。

图9:H-BS EOC处CINR值及H-BS引入功率控制后T-BS的最佳INR变化。
图9:H-BS EOC处CINR值及H-BS引入功率控制后T-BS的最佳INR变化。

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:如何利用高集成度的RF调谐器应对移动电视技术的挑战
下一篇:紧凑、具有成本效益的低功耗以太网至网络处理器桥

射频和天线工程师培训课程详情>>

  网站地图