• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RF技术文章 > OFDMA加速提升4G网络传输质量

OFDMA加速提升4G网络传输质量

录入:edatop.com    点击:
尽管3G无线设备仍在部署中,但整个无线生态系统却已开始定义和设计4G系统。虽然3G和4G系统并没有严格定义上的差别,但在所能支持的最高数据速率方面,标准组织内似乎正在达成共识。诸如HSPA等3G系统的上行和下行速率分别为5到10Mbps和15到20Mbps。与3G系统相比,4G系统设计的这两个指标高出5到10倍,其上/下行速率分别在50Mbps和100Mbps以上。

目前的3G无线通信通过在物理传输层采用码分多址(CDMA)技术一直在成功地为新应用提供更多带宽。与通过频率或时间分割在同一信道传送多个数据的老方法不同,CDMA利用伴随每条信道代码的建设性干扰特性实现复用,从而在电信运营商所用的整个频谱内传送数据。CDMA在分组切换语音无线领域被证明是有效的;与以前系统相比,扩频技术允许更有效、更灵活地利用带宽。

就4G标准而言,两个主要的3G标准组织――第三代合作伙伴计划(3GPP)和第三代合作伙伴计划第二组(3GPP2)已指出,正交频分多址(OFDMA)是它们选用的物理层传输技术。

OFDM概述

OFDMA以正交频分复用(OFDM)为基础。OFDM技术出现已有段时间了,且已用在ADSL、Wi-Fi (802.11a/g)、DVB-H及其它高速数字传输系统中。因而OFDM在蜂窝无线领域的最初实现是定点接入的WiMAX 802.16d也就不足为奇了。该无线技术已被用于提供高速因特网接入――既可作为诸如ADSL或有线等其它接入技术的替代,又可在其它接入技术没覆盖的地区提供服务。

在OFDM中,采用快速傅立叶变换(FFT)将可用带宽分成数学上正交的许多小带宽。而频带的重构是由快速傅立叶反变换(IFFT)完成的。FFT和IFFT都是定义得很完善的算法,当大小为2的整数倍时,可被非常高效地实现。OFDM系统的典型FFT大小是512、1024和2048,而较小的128和256也是可能的。可支持5、10和20 MHz带宽。该技术的一个优异特性是易于改用其它带宽。即便整个可用带宽改变了,较小的带宽单元也可维持不变。例如:10MHz可分成1,024个小频带;而5MHz可分成512个小频带。这些典型大小为10 kHz的小频带被称为子载波。

图1:在OFDM系统中,可用带宽分割成许多子载波。
图1:在OFDM系统中,可用带宽分割成许多子载波。

‘多径’效应是目前无线系统面临的挑战之一。多径来自发射器和接收器间的反射,反射在不同时刻到达接收器。分离各反射的时间间隔被称为延迟扩展。当延迟扩展与发送的符号时间(Symbol Time)大致相等时,这种干扰有可能引发问题。典型的延迟扩展时长几微秒,与CDMA符号时间接近。OFDMA的符号时间大致在100微秒,因而多径现象的影响不太严重。为缓解多径效应,在每一符号后插入一个约10微秒、称为循环前缀的警戒边带。

为得到更高数据速率,OFDM系统必须比CDMA系统更有效地利用频宽。每单位赫兹的位数称为频谱效率。采用高阶调制是实现更高效率的方法之一。调制是指每一子载波发送的位数。例如,在正交振幅调制(QAM)中,每载频发送2位。在16 QAM和6? QAM中,每个子载波分别发送4和6位。在4G系统,因预期会采用6? QAM,所以其频谱效率很高。

图2:用于LOS和NLOS环境的WiMAX技术。
图2:用于LOS和NLOS环境的WiMAX技术。

OFDM的另一个好处是采用了先进的多天线信号处理技术。多输入多输出(MIMO)和波束成形(通常指AAS)是两种最常用的技术。

在MIMO中,系统接收来自不同发射天线的信号会有很大差异。在室内或建筑密集的都市,由于发射器和接收器之间存在许多反射和多径,因而这种情况很普遍。在这种情况下,每个天线可以相同频率发送另一个不同信号,而在接收器端通过信号处理还可恢复该信号。理解这种特性的一个简单方法是考虑一个标准的、有N个方程和N个未知量的方程组,可借助熟知的矩阵求逆技术来求解该方程组。以这种方式重复利用频率被称为Re-use1,同一频率在同一时间被用于不同信号。

而波束成形则是一种发射技术,它试图在接收器内为多个发射器形成一个一致架构。这种技术可在接收器端得到很高的信噪比(SNR),另外,它还可提供更宽带宽或以相同发射功率实现更远距离。波束成形不是利用天线间的不同空气接触反射原理,而是对信号进行修改以使其统一。因此,波束成形对频率的重复利用与MIMO所用的方式不同。将频率分成不同的频段用于不同蜂窝单元被称为Re-use 3。

在一些应用中,可能结合MIMO和波束成形技术,尤其是在4天线系统中。一个理想的系统应根据其特性进行切换以便在不同模式运作。

图3:OFDM内的帧分配。
图3:OFDM内的帧分配。

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:混频器2x2杂散响应与IP2的关系
下一篇:无源收发混频器IC中的宽带LO噪声

射频和天线工程师培训课程详情>>

  网站地图