• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RF技术文章 > 实现软件GPS的软硬件设计讨论(Ⅰ)

实现软件GPS的软硬件设计讨论(Ⅰ)

录入:edatop.com    点击:

时间测量和样本集

图2用以说明GPS数据发送的时间关系。大于GPS数据位持续时间、即20ms以上的定时测量与20ms以内的定时测量不同;较长的定时由数据位和数据位变化的时间确定。此时需要检测数据位转换发生的精确时间――即从哪一个码片起、开始发送下一位数据。

图2:GPS数据和信号的时间关系示意图。
图2:GPS数据和信号的时间关系示意图。

如前一节所述,直到时间的引用和继承不能维持当前位定时的准确性时,才需要测量位变化发生时间(和其他不能维持的更慢定时;)。由于数据位与位之间无传送间隔,只有数据发生变化时才能测量到这个时间。为了识别数据位的变化,要连续地监视PRN码片、或者采集的信号样本集要包括至少一次位变化。除了TLM报文字段内的8个字节的前导序列的位是已知的(10001011b),其他时间数据如何变化是未知的。这就使得一个大的样本集,如果包括了n各可能的位变化时,要在n2种组合状态计算相关积。一般不需要处理n>1的样本集;一方面本节后面的仿真结论是样本集深度接近1个PRN码片时已可有效计算,而且每个数据位重复达20个相同PRN码片;另一方面,TLM字段的前导序列每6s出现一次,以40ppm的时钟估计,一次继承的定时准确度可以在4个子帧中、即24s内,利用时钟定位到20个PRN码片中的一个。即使是不能定位到一个PRN码片内,如果只在一个数据位时间内,即20ms内采集数据,则可保证只发生一次可能数据变化的时间。

数据位变化时间测量确定到了一个PRN码片,即1ms。更精细的定时需要测量PRN码的相位关系。这个测量是GPS接收过程中最频繁的处理。

考虑到样本集中可能存在一次数据位变化的情况,对一个样本集做相关计算可能得到两位数据、一个数据变化时间和一个相位偏移时间。除了测量数据变化时间外,把n=1的情况包括进来还可用于在低量化精度时处理频偏引起的反相。

接下来估计需要的样本集深度。图3是不同样本深度的GPS C/A码滑动相关时的相关积变化曲线。信号样本中的11个其他伪随机序列用来模拟干扰和噪声(取单星信号功率为底噪的-16bB,另包括7颗其他星的等强度信号作为干扰和预留8dB的接收机噪声;MAX2741/2741A的级联噪声系数<4.7dB。)。可以观察到样本深度超过80%的码片长后,已可以利用1.05倍均值识别相关峰位置。生成数字化样本集时采样频率和幅度量化的影响将在后面的节讨论。

图3:不同样本深度时的GPS C/A码滑动相关系数仿真计算。
图3:不同样本深度时的GPS C/A码滑动相关系数仿真计算。

以上仿真计算采用的是完整的PRN码片。实际应用中样本集一般是由若干个片断组成的,每个片分别在一个连续的小时间段内采集、整个样本集在一个较大的时间跨度内采集。根据PRN的特性,这些由残片组成的样本集在整体上仍保持原来PRN码的统计特性。

除了上文提出的对样本集的最小深度和最大时间跨度的限制外,另外一个对时间跨度的实际限制是系统的时变性。GPS卫星约在地面以上20,200km处以12小时一圈的速度绕地球旋转(地面观察者看起来24小时内只有一次起落;)。当卫星在接收机上方45°方位飞离,其速度约为5000km/h或1.7m/ms(作为对比:1000km/h的喷气式飞机速度合0.27m/ms)。当样本集跨较大的时间时,其间的信号相位和频率都有变化。实际系统不可能针对每颗星改变数据采集速率,只可能改变本地相干码样本(一些文献称复制码)。对一个样本集前后采用不同微偏的频率做滑动相关计算需要多次生成本地样本和重复计算。与之相比,采用在较短的样本集和固定微频偏,对得到的一组位置信息、配合移动状况加以修正和平均则可在较低运算量和实时要求下快速得到较粗位置和移动数据;进而利用这些数据修正微频偏和移动,可在若干次迭代后取得精度改善的数据。相对于卫星的速度,接收机的运动变化不会引起显著的频移而只是表现为相移(微频偏的时间积分)。在这个算法下允许的最大样本集时间由本地频率与接收数据的频差决定,即在这个时间内、频差不足以使PRN码多次反相(与解调方式有关,也可能是不足以使载波多次反相)。从这个限制考虑,很多型号晶振的性能可容忍20ms的样本集时间;除了一些特别的应用,例如前导序列测量,一般不需要考虑这个限制。

一般速度下与卫星的相对移动主要是由卫星的移动确定的,而卫星移动一段时间内是稳定的,因此对载波的多普勒频移补偿一段时间也是可以不变的。多普勒相、频移动并不能直接反映到基带信号中;这一方面是由于基带信号不具备单一的频率,同时也是通路中滤波的结果。不考虑移动补偿对样本集做相关计算时,平均的效果使卫星相当于卫星处在样本时间对应的移动路径的中点。这样的简化处理对较低的位置精度和接收机移动速度时可用的,对于较高位置精度和较快移动的特别应用,则需要根据样本集采集时间做修正后进行相关计算。而对于更高位置精度的要求,由于要使用载波相位测量等手段直接处理这部分偏差,反而不再需要这样的简化补偿。

作者:谭磊

应用工程师

MAXIM北京办事处

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:下一代移动通信3G LTE的测试现状分析和技术挑战
下一篇:索爱W880i全功能超薄手机的纤薄技巧揭秘

射频和天线工程师培训课程详情>>

  网站地图