• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RF技术文章 > WLAN 802.11ad及其后续发展

WLAN 802.11ad及其后续发展

录入:edatop.com    点击:

WiGig/IEEE 802.11ad规范

低功耗设计是IEEE 802.11ad规范描述的关键特性之一,包括先进的电源管理在内,用于支持手持移动设备和笔记本电脑更长的电池寿命。设备能够在60GHz工作和更低的2.4GHz与5GHz WiFi频率之间无缝地切换。除了HDMI的无线实现外,这种链路还能模拟DisplayPort、USB和PCIe连接。系统中还利用先进的加密算法集成了高等级的安全性。

更重要的是,802.11ad标准支持使用相位阵列天线(PAA)实现波束成形技术,从而最大限度地提高信号强度,实现距离超过10米的通信。

WiGig芯片市场

图2显示了ABI Research公司对不同种类的802.11芯片的出货量预测。到2018年,包含802.11ad的三频段芯片组市场有望达到每年15亿片左右的出货量,而所有种类802.11芯片的总市场规模也不到40亿片。在过去5年中,许多公司开发出了符合802.11ad的射频芯片,都是用的60GHz RF-on-CMOS技术——最初是65nm工艺,后来发展到40nm,如今正向28nm和SiGe过渡。这些产品包括IBM的60GHz PAA芯片、Silicon Image公司的60GHz第三代无线高清PAA芯片以及Wilocity的芯片,而Wilocity已经在交付用于笔记本电脑和移动手机应用的预认证WiGig芯片组。

尽管所有工作重点放在开发射频芯片方面上,以及克服毫米波频率消费设备的设计挑战方面,但在提供控制波束成形功能以及实现协议栈内的物理和MAC功能的能力方面基带同样重要。虽然波束成形本身是使用射频电路中的移相器完成的,但处理器也需要向移相器提供非常快速的指令才能实时控制这个过程。

调制解调器功能的运算强度很高,因为协议要求2Teraops/s以上的数字信号处理能力。在最初开发WiGig原型解决方案时,基带主要是在固定功能的硬件上实现的,但从那以后就向软件定义架构发展了,目的是提供更多的应用灵活性和可扩展性。

在单个处理器上实现2Teraops/s可能导致显著的散热问题(因为需要给这种处理器提供10GHz频率的时钟),而在传统的多内核系统中,芯片面积将很大。WiGig还要求复杂的2.64GHz数字采样率,这个数值比以前的无线标准高了一个数量级,使得处理架构的最优选择进一步复杂化,因而自然导致考虑并行处理架构,以便支持与目前硅片技术兼容的时钟速度。

第三页:基带架构

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:Cellular Offloading:无线高密度接入的解决方案
下一篇:拓宽思维,为射频芯片增加可编程功能

射频和天线工程师培训课程详情>>

  网站地图