• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RF技术文章 > 在医疗设备中开发利用5GHz频段

在医疗设备中开发利用5GHz频段

录入:edatop.com    点击:

在基础设施中采用802.11n的优势

通过充分利用802.11n在Wi-Fi基础设施中的优势,医院可以在5GHz范围内实现显著的性能改进。802.11n的两大特色功能——发射波束成形(TxBF)和最大比例合成(MRC)——实际上是利用了多径传播。通过使用支持多根天线的双频段802.11n接入点设备,医院可以改进覆盖图形和所有Wi-Fi客户端设备的覆盖范围,甚至是那些不支持802.11n的设备。

接入点设备利用TxBF可以在每根天线上发送信号的不同拷贝。无法接收来自某一根天线的信号的客户端设备可以接收来自另外一根天线的信号。在没有TxBF时,客户端设备在接入点范围之外;有了TxBF后,客户端设备就可能在覆盖范围之内了。通过填充零区或死区,TxBF可以增加发射距离。

TxBF可以增强发射性能;MRC可以增强接收性能。借助MRC,接入点设备的每根天线都是来自客户端设备信号的潜在接收者。当某根天线无法接收客户端设备的发射信号而另一根天线可以时,客户端设备就处于有效覆盖范围内。通过填充零区或死区,TxBF可增加接收距离。

虽然TxBF和MRC增加了覆盖范围,但干扰却会减少覆盖范围。射频干扰在2.4GHz频段非常普遍,它将提高本底噪声,降低信噪比(SNR)——发射信号和周边干扰之差。随着信噪比的降低,覆盖范围将变小。因此2.4GHz频段中工作设备的不断增多一定程度上抵消了这个频段的范围优势。

当医院的Wi-Fi基础设施支持双频段802.11n时,5GHz时覆盖范围的少许减少可以由这个频段干扰相对较少而带来的可靠性提高来补偿。由于所有802.11标准都具有速率偏移功能,当工作在距接入点设备相同的距离时,5GHz频段的客户端设备的工作数据速率要比2.4GHz频段稍低一些。

机动性

当Wi-Fi客户端设备启动时,它必须寻找一个可以连接(关联)的接入点设备。当它与该接入点的连接变得不稳定时,它必须找到一个能够提供更好连接的接入点。搜索接入点的这个过程被称为扫描。共有两种扫描类型:

1.主动扫描

对于可能有接入点设备在上面工作的每个信道来说,客户端设备会发送一个探测请求,然后等待接收探测响应。客户端设备将根据探测响应判断哪台是它可以关联的最佳接入点设备。

2.被动扫描

与发送探测请求不同,客户端设备在每个信道中侦听由接入点设备以定期间隔发送的信标帧。

接入点设备将在20ms内响应探测请求,而接入点设备可能要花100ms甚至更长时间才会发送一个信标。因为客户端设备在每个信道上等待来自接入点的信息所花时间较少,所以主动扫描比被动扫描更加高效。

在做主动或被动扫描时,客户端设备不能收发有效载荷数据。正因为如此,长时间扫描对于要求持久网络连接的应用来说具有负面影响。

5GHz频段有一个独特的Wi-Fi特性,即动态频率选择(DFS)。在全球许多地方,被称为DFS信道的一些5GHz信道由优先级比Wi-Fi设备高的天气和军事雷达系统所用。表1显示了5GHz信道,表中详细列出了法律范畴内规定的可用DFS(D)和非DFS(√)信道。


表1: 该表显示了5GHz信道。

在DFS信道上发射信号之前,接入点设备必须先侦听雷达系统是否存在。如果接入点设备检测到雷达,那么接入点设备必须将该信道标记为不可用,然后转移到未被占用的信道,并指示所有关联客户端设备做同样的事。

由于无线客户端设备不能检测雷达的存在,因此它们必须先对每个DFS信道进行被动扫描,以便检测接入点设备是否在这个特定信道上发送信标。一旦检测到信标,客户端设备就被允许执行主动扫描,并在这个信道上连接接入点设备。如果接入点设备后来检测到雷达并转移到另一个信道,那么客户端设备必须转移到相同的信道(以保持与该接入点设备的连接)或漫游到另一个接入点设备。

由于被动扫描时每个DFS信道要花几百毫秒时间,因此对于要求持久网络连接的设备(如医疗设备)来说不鼓励使用DFS信道,特别是在拥有15个DFS信道的FCC和ETSI法律范畴。

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:MIMO接收器需要高性能的双通道无源混频器
下一篇:具有远期效应的近场通信技术

射频和天线工程师培训课程详情>>

  网站地图