- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
基于伽利略卫星网络GPS系统的设计
当基带处理可以在应用处理器上以软件实现的时候,消费型伽利略/GPS接收器就有可能成真。在这种方式中,由于一个接收器硬件已可支持多个卫星系统,所以基于软件的伽利略/GPS 就相当于软件定义的无线电(SDR)。此外,随着无线通信技术不断融合,可以预见在不远的将来,消费电子设备将利用多功能无线电技术来支持蓝牙、WiFi和使用可配置软件基带实现的伽利略/GPS。
开发商可以选择继续使用硬件来实现 GPS的基带处理,而利用未充分使用的主处理器资源在软件中执行伽利略的基带处理;又或者在软件中同时实现GPS和伽利略两种基带处理。这两种方法都能降低在消费应用中实现定位服务的成本,但在软件中同时实现这两种基带处理可以完全消除对硬件基带芯片的需求。
特别是,如果在软件中推行基带处理,可以将伽利略/GPS系统的价格降低50% 以上。基于软件的伽利略/GPS系统预计在供货时能迅速达到1美元的价格点,而有助此目标成真的因素之一是功能软件本身的商业模式:当软件开发完成后,就不会有任何制造成本,而且软件一直以来都是与硬件捆绑销售,以作为促销硬件的手段。通过集成固定的基带处理技术(如关联技术)和射频电路还可以进一步节省成本(见图3)。此外,伽利略可以在任何时间加入到基于软件的基带设备之中而不增加整体的硬件成本。相对来说,如果是基于硬件的实现方案,推行伽利略的配置将增加设备的零售成本,但却不会马上为消费者带来价值。
图3:被划分为软件和射频部分进行处理的各个功能方框图(即把关联功能从软件转移到无线部分进行处理)。
软件基带处理是否可行可以由评估最坏情况下的加载来确定。对伽利略/GPS来说,峰值处理会在最初的信号采集过程中或定位丢失之后(例如在开车通过一条长隧道之后)出现。当锁定了位置后,基带处理的运算量就会大幅度下降,因为一旦系统掌握了位置信息,维持该位置信息就比较容易。
当然,最坏情况下的处理是不应过分占用应用处理器的运算能力的,以免影响其它功能。初期的软件基带实现方案会消耗手机应用处理器(如ARM9) 多达66%的可用计算能力,不过,软件供应商预期能够把这个负荷降低到稍多于可接受的10到15%。
达到这一目标的实现方式之一就是采用非实时技术。要把数据作为信号流实时地处理需要基于中断的处理能力,但这样会导致高开销,而且在不同应用中管理实时任务也很复杂。此外,由于处理器持续地被中断以处理各种信号,其电源就不是经常处于关闭状态,因此大大增加了整个系统的功耗。
非实时处理采用的是一种突发方式,一次收集许多数据样本用于处理。虽然这会增加延迟,但这种少量的延迟是可以忽略的,并不会影响精度或用户体验。由于数据比较集中,所以当应用处理器没有忙于处理较高优先级的任务时,就可编排处理的日程进度。要注意的是,跟实时处理的情况不同,这个处理器并不会被定时唤醒后只去做基带处理;相反,当处理器被某个任务唤醒后,便会执行基带处理,这样,处理器后面就能够休眠比较长的时间。
解决灵敏度的问题
对于伽利略/GPS 接收器(特别是手机)来说,灵敏度是一个关键的性能和精度指示。信号采集要求(A-GPS系统中的)接收器上的信号电平在 -130到-155 dBm之间,大约比由 RF 前端模块所得的噪声电平低 19到34dB。关联器会把一个2MHz带宽的信号去扩展为一个50Hz的数据信号,从而提供43dB的关联增益,从而把有用信号提升到噪声电平以上,方便它们进行处理。然而,任何接近有用信号频率的其它通信信号或在有用频段的谐波都可能成为一种干扰源,并进一步降低接收器的灵敏度。
最常见和最具破坏性的干扰源来自个人导航设备本身。例如,如果手机远离基站并以最大功率发射,这意味着在同一设备内1800MHz频点处可能有30dBm的信号,因而进一步导致伽利略/GPS信号在最坏情况下的灵敏度衰减。
要克服内部传输干扰有若干方法。其一是由于发射信号是已知的,因此可以从伽利略/GPS信号中减去。另一种方法是,使用滤波器把蜂窝电话的干扰降低70dB以上,以保护输入的卫星信号。
然而,如果GPS拥有2MHz的带宽而伽利略扩展至4MHz,那么双接收器架构就具有两个最佳的滤波器。GPS的调制方式为BPSK,而伽利略的调制方式为BOC(1,1),这样,两种信号都可以占用相同的信号带宽,然后关联器也能够从伽利略信号中辨别GPS信号,反之亦然。
滤波器还适用于基带处理器。以硬件实现基带时,由于这些滤波器的参数是固定的,因此限制了无线部分的优化程度。但如果用软件实现基带滤波,这些参数就可以被改变,以匹配具体的信号条件。此外,随着滤波算法的发展,这些滤波器可以被应用到现有的架构上。即便各种手机的架构存在极大的差异,但这样的灵活性使单个双无线接收器架构就可以很好地应用于不同的产品线。
灵敏度也可能因一个不良晶体或VCXO参考时钟而严重地降低。一般来说,时钟源越稳定,成本就越高,但采集时间也越快。例如,一个0.5ppm的参考时钟将使锁定时间达到40秒的数量级。如果采集时间不成问题,那么,2.5ppm的参考时钟就应该足够了。
很多人都误以为GSM参考时钟可以生成稳定的伽利略/GPS参考时钟,其实不然。 GSM参考时钟是锁定到网络的,而且需要频繁进行频率修正。有时侯,这些修正是通过GSM基带驱动一个DAC来实现的,再由它驱动一个VCTCXO。参考时钟频率的渐进式变化将不会让伽利略/GPS接收器与卫星信号保持信号锁定,特别是在信号较弱的地方,这将导致定位丢失。所以,最安全的方法是针对伽利略/GPS子系统采用独立的时钟,但这样会增加整体设备的成本。开发商需要仔细考虑性能和成本之间的折衷,并在架构设计过程的早期避免开发出一个无法满足最低精度要求的设计。
总而言之,伽利略系统可以改善全球定位服务的可用性和性能,而增加的精度能完美地补充GPS的不足。借助基于软件的基带处理功能,个人导航设备(包括手机和便携式媒体播放器)将能够充分发掘应用处理器的闲置处理能力,以高性价比的方式实现伽利略/GPS双无线子系统,进而改进消费者的全球导航方式。
作者:Malcolm Lomer
GNSS解决方案部产品行销经理
SiGe半导体公司
作者介绍
Malcolm Lomer已经做了6年的GNSS产品行销工作,拥有超过15年的GPS市场技术、销售和行销经验。他目前担任GNSS解决方案部产品行销经理,负责SiGe半导体公司的GPS和GNSS射频前端芯片产品。在加入SiGe公司之前,Lomer在SiRF科技公司任现场应用工程师。更早前他曾任卓联半导体公司GPS市场开发经理。Lomer拥有英国曼彻斯特科技大学的电子专业理学士学位。