• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > 微波射频器件设计 > RF功率放大器的自适应前馈线性化技术

RF功率放大器的自适应前馈线性化技术

录入:edatop.com    点击:

1 引 言

常用的线性化技术有反馈法、预失真法、前馈法、笛卡尔环、非线性部件实现线性化(LINC)等。预失真法是最常用的,其工作函数预失真器有2个显著的特点:线性修正是在功率放大器之前,其插入损耗小;修正算法带宽限制小。数字预失真技术[1]复杂度高能提供较好的IMD压缩,但由于DSP运算速度使其带宽小。笛卡尔[2]反馈复杂度想对低,能提供合理的IMD压缩,但存在稳定性问题且带宽限制在几百kHz。LINC法将输入信号变成2个恒包络信号,由2个C类放大器放大,然后合成,但对元件的漂移敏感。前馈技术为另一类线性化技术,他提供了闭环系统的线性化精度,开环系统的稳定性及带宽。目前仅有前馈技术才能满足现代多载波通信基站功率放大器的性能指标。

前馈技术起源于“反馈”,应该说他是一种老技术,除了校准(反馈)是加于输出之外,概念上是“反馈”,不过是不同的执行方法。前馈克服了延迟带来的影响。他提供了反馈的优点,但没有不稳定和带宽受限的缺点。放大器的输出应用了反馈校准。由于在输出校准,功率电平大,校准信号需达到较高的功率电平,这就需要额外的辅助放大器,而且要求这个辅


助放大器本身的失真特性应处在前馈环系统指标的上限。系统内不同元件的增益、相位跟踪准确度也必须保证,而且要稳定。在这个频率范围内,温度 和时间的校准精度完全依赖系统内各元件的精度。尽管存在这些问题,前馈技术仍然是最热门的,因为他是惟一能满足宽带、多载波系统功率放大器的线性化指标的有生命力的技术。商品前馈环指标表明:单一的前馈环可降低多重环的多载波系统比开环降低50dB。本文讨论自适应前馈线性化技术的原理、实现方法及其仿真结果。


2 自适应前馈法线性化原理

图1所示是基本的前馈环框图。未失真的抽样信号经延迟后与主放大器放大的信号经过适当的衰减耦合后在0°~180°合成器中比较。如果主放大器无增益和相位失真,合成器产生零输出。若主放大器有任何增益和相位失真、压缩或AM-PM效应,合成器输出端就会有小的RF误差信号,输入到误差放大器放大到输出抽样信号的电平,主信号经延迟并补偿误差放大器的延迟后与误差放大器的输出合成校准后输出。必须强调,相位与振幅的校准——加或减,全都在RF下进行,而不是在视频或基带进行。即校准在最终带宽内进行。最终带宽由系统各种元件的相位、振幅的跟踪特性决定。

edatop.com

edatop.com

edatop.com

edatop.com

edatop.com

edatop.com

5 结语

射频功率放大器的线性化技术可以明显地改善放大器的线性度,同时提高输出功率和效率。在负反馈、预失真和前馈这三种线性化技术中,前馈技术提供了反馈的优点,但没有不稳定和带宽受限的缺点。本文利用梯度法实 现自适应性前馈线性器。仿真结果表明较之没有进行自适应前馈调整,在功率回退5dB的情况下,功放的三阶交调可以改善40dBc,五阶交调可以改善65dBc,功放的线性度得到明显的改善,从而实现了大功率、高线性的输出,他降低了对功率放大器末级器件的要求,提高功放的电效率。在多载波、高速度、大容量通信系统中,前馈放大器可以很好地解决邻近信道干扰,提高系统ACPR值,保证系统工作的有效、可靠性。
 

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:基于ADL5902 TruPwr检波器的RF信号分析
下一篇:RF增距芯片A7700提高射频电路设计

射频和天线工程师培训课程详情>>

  网站地图