• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > RF技术文章 > 雷达抗干扰技术研究

雷达抗干扰技术研究

录入:edatop.com    点击:

1.引言

近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰(ECM)环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。

雷达面临的复杂电子干扰可分为天然无线电干扰和人为无线电干扰两大类,分别包括有源和无源干扰。人为干扰详细分类如图1所示:

edatop.com

图1人为干扰

雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中,下面将逐一介绍。

2.雷达抗干扰技术

2.1与天线有关的抗干扰技术

雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距离信息;为了消除从旁瓣进入的干扰,还可以采取旁瓣消隐和旁瓣对消技术;当采用阵列接收天线时,可通过调整各个阵列单元信号的幅度与相位,在多个干扰方向上构成天线波瓣的零点,从而减少接收干扰信号的强度。

从电波与天线理论可知:接收天线能很好地接收与其极化方式相同的电磁能量,若极化方式不同,则会引起很大衰减。因此在设计天线时,采用变极化技术,使极化形式和目标信号匹配而与干扰信号失配,就能减少对干扰信号的接收。另外还可采用旋转极化对消、视频极化对消技术等。

2.2与发射机有关的抗干扰技术

对付噪声干扰的最直接办法是增大雷达发射机功率,结合高增益天线可以使雷达获得更大的探测距离,但该方法对箔条、诱饵、转发器和欺骗式应答干扰等无效。对此,更有效的方法是使用复杂的、变化的、不同的发射信号,让电子支援(ESM)和电子干扰承受最大的负担。根据方法的不同可分为跳频法、频率分集或宽瞬时带宽信号。

如果频率能在较宽的范围内随机跳变,使雷达不断跳到不受干扰的频率上工作,它的抗干扰能力就能得到增强。常用的方法有固定跳频和频率捷变,由于频率捷变信号的跳频速度很快(可达微秒数量级),因此它能使瞄准式杂波干扰机很难截获或跟踪雷达。对于阻塞式干扰机,由于很难以足够的功率覆盖整个雷达的跳频带宽,干扰效果有限。在雷达发射机平均功率相同的条件下,宽带频率捷变雷达是目前抗杂波干扰的较好体制。

另外,开辟新频段,让雷达工作于更低或更高的频段上,散布范围尽量大;还可以使雷达突然在敌干扰频段的空隙中工作,使敌方不易干扰。

2.3与接收机有关的抗干扰技术

当雷达遭遇强大干扰时,强干扰信号与目标回波信号一同进入雷达接收机,使其超出正常的动态范围,工作状态进入饱和状态,这称为过载现象。一旦接收机出现过载,雷达就处于盲视状态,失去监视目标的作用,所有的反干扰措施也都失去意义。因此,抗饱和过载是雷达抗干扰的一条重要措施。雷达常采用的抗饱和过载技术有宽动态范围接收机(如对数接收机、线性-对数接收机)、瞬时自动增益控制电路、“宽-限-窄”电路、检波延迟控制电路、快速时间常数电路、近程增益控制电路、微波抗饱和电路等。

“宽-限-窄”抗宽带噪声调频干扰系统包括:宽带放大器、限幅器和窄带放大器,综合利用了频域和时域抗干扰原理,多次“整削”宽带噪声调频干扰的能量,同时又充分保护目标回波信号能量不受损失,可极大地改善系统信干比,从而极大地降低雷达虚警概率、提高发现概率,因而是抗宽带噪声调频干扰的一种有效抗干扰技术。

2.4与信号处理有关的抗干扰技术

2.4.1信号选择法

信号选择法,是基于信号的已知参数(脉冲宽度、脉冲重复频率、幅度、频率、相位等)区分干扰信号,可分为幅度选择、时间选择、频率选择、相位选择等。

幅度选择:根据雷达接收机输入端有用信号和干扰信号强度的不同,从干扰背景中分离出有用信号。当有用信号幅度大大超过干扰幅度时,可采用下限幅器,其输出仅在输入电压超过限幅电平时才出现。在脉冲雷达系统中,除了下限幅器外,还可以采用脉冲电平选择器,它可以除去振幅超过有用信号的干扰脉冲。

时间选择:在干扰背景下,脉冲信号的时间选择是以待选脉冲与干扰脉冲之间的时间位置(相位)、脉冲重复频率或脉冲宽度不同为基础的。在自动距离跟踪系统中,距离门选通电路就是根据脉冲位置的时间选择,它只允许预测距离门附近的信号通过,这不仅减小了信号处理量,而且消除了其他位置的噪声、干扰信号。脉冲重复频率鉴别电路是将接收机接收到的脉冲信号与基准脉冲比较,只有在时间上与基准脉冲信号重合的脉冲才能通过。脉宽选择电路,只让脉冲宽度处于事先确定范围内(大于、小于或等于给定值)的脉冲信号通过。脉冲重频鉴别电路与脉宽选择电路对抑制相干脉冲很有用。

频率选择:频率选择是以有用信号和干扰信号的频谱不同为基础的。如多普勒滤波器组是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器。当目标相对于雷达的径向速度不同,即多普勒频移不同时,它将落入不同的窄带滤波器。因此,窄带多普勒滤波器组起到了实现速度分辨和精确测量的作用。另外,窄带多普勒滤波器组滤除了多普勒频带外的干扰信号,它是PD雷达中不可缺少的组成部分。

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:4G,安捷伦测试测量大会引领行业创新
下一篇:闪亮太赫兹源

射频和天线工程师培训课程详情>>

  网站地图