• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > 微波射频器件设计 > 集成超快速光交换机的光放大器

集成超快速光交换机的光放大器

录入:edatop.com    点击:
       集成了交换器件后,可以实现不停机维护和其他一些应用。

  光放大器(OA),特别是掺铒光纤放大器(EDFA),是光网络中最普通的器件。 而且OA与DWDM技术结合使用后,可以在超长途和长途陆地网络中实现高容量传输。在这些网络中,OA的主要作用就是:补偿信号在光纤中传输时的损耗。

  另外,OA在城域网中起到的作用也十分关键。因为城域网中的传输距离虽然缩短了,但是由于使用了光分插复用器(OADM)以及其他的光网络单元,所以还是需要OA来补偿他们带来的插入损耗。

  因此,对光放大器的需求激发了人们来开发不同类型的OA。OA若以掺杂剂(如铒元素)和玻璃基质(如硅元素)来划分,主要分为基于光纤和基于波导两种。实际上,要设计一种OA必须考虑它的类型和它的应用范围。例如,适用于长途的EDFA和EDFA/Raman混合放大器,就与半导体光放大器和用于城域网的紧凑型EDFA大为不同。

  现在,人们正进行大量的工作,评估在通信网中引入新的光交换技术的好处。在提高交换速度的同时,向光交换元件中加入一些新的功能,例如可变光衰减和光多播,就能够带来多项好处。在OA中加入新型光交换器件也可以增加很多用途。

  一般来说,  长途EDFA线路放大器的结构是OA的共同参考结构。这种结构适用于多种类型的放大器,而且设计理念可以很容易地适用于不同的放大器。这种结构的基础是两级放大。因为,经过两级放大后,放大器的噪声较低,增益较高。

  在两级增益介质中间加入不同的元件或者子系统,还可以为放大器添加一些额外功能。例如,加入可变光衰减器(VOA)可以提高放大器的动态范围;加入色散补偿光纤,可以以最小的光信噪比(OSNR)损失高效地管理色散的分布;加入OADM就可以在放大器节点分插业务流。
  
  提高放大器的可靠性

  由于光放大器是光网络中最普遍的器件,所以,他们对故障的适应和恢复能力在很大程度上会影响到网络的可靠性。通常,DWDM链路中某一个放大器的故障会导致多个信道需要实行保护倒换,因为这条链路上的光纤需要重新选路。所以,提高OA对严重故障的恢复能力是非常重要的。对于一些不太严重的故障,它们只会恶化传输性能,但不会使整个链路瘫痪,这时必须一方面维修光放大器,一方面还要保证业务的传输。引入下一代具有可变衰减功能的超快速交换机后,就可以提高放大器对严重故障的恢复能力,同时还能在业务运行过程中进行系统维护。

  运营商们之所以十分希望对放大器进行业务运行过程中的预防式维护,是因为运行高速长途网络的经济利益非常巨大。即便在近期价格下跌的情况下,一条200Gbit/s的网络链路,也能够每小时轻松收入10,000-20,000美元。因此,如果能不中断任何网络单元而实现网络维护,那么运营商们不仅能获得源源不断的收入,而且也避免了因违反服务品质协议(SLA)而造成的损失。

  当OA发生了不是很严重的故障时,必须能够在维持正常业务的情况下修复OA。要解决这个问题可以使用旁路技术绕过出故障的放大器(或者子系统),用一个后备系统来重新路由,从而在不影响链路传输的情况下进行放大器的维护。

  图1描述的是一个超快速交换机如何用于旁路操作中。若一个交换机的交换时间小于500ns,用它就可以在只中断传输500ns的情况下完成旁路操作。由于中断的时间足够短,所以避免了放大器瞬间离开链路。然而在链路的终点,接收器中的锁相环还是会受到影响,不过由于锁相环很快会重新锁定,所以亦不会引起保护倒换。此外,图1所示的配置方法只能适用于一部分OA。


图1  用一个超快速交换元件旁路故障放大器,或者用它在不到500ns时间内实现其他的维护。


  
图2  在这个子系统的旁路结构中,后备系统补偿了5%分流引起的OSNR下降。而且使用隔离器可以避免反射光放大以及谐振效应。


  如图2所示,下一代的某些交换机具备多播功能,那么利用这种功能将光分流器接入到系统中就不会带来附加损耗。在这种设计里,由于5%的分流器要被用作测试接口,这样会降低OSNR,所以后备系统必须对此进行补偿。而且,为了避免放大反射光以及谐振效应,还需要使用隔离器。装有光电管的分流耦合器通常被用来监测输入、输出和反射光功率。测量值可以用来调节泵浦激光器的功率,如果输出端光纤折断了或者没有连接,则可以自动关闭泵浦激光器。
  
  业务运行中的泵浦源替换

  OA中的泵浦激光器通常都是高功率的激光器。而这些高功率有源器件的使用寿命往往不长,一般只有几个月。那么单个光泵浦源发生故障就有可能使放大器无法工作。所以,一些新型的放大器都会配备一个或多个后备泵浦激光器。这样,如果一个泵浦源不能工作,就不会引发放大器的严重故障。
  

图3  在一个可替换泵浦源的结构中,将一个2×1的交换机用作合路器(类似于3dB耦合器)或交换机,就可以从链路中隔离故障泵浦源。


  图3所示是一种参考结构。这种结构可以在不影响OA工作的情况下替换泵浦源。它的设计原理就是用光交换机的交换和反向多播功能,从增益介质中隔离故障泵浦源。具体地说,就是用一个光交换机将两个泵浦源和增益介质连接起来,交换机通过反向多播将两个泵浦源发出的光合并在一起。于是,一旦某个泵浦源出故障,交换机就只把另一个泵浦源连到增益介质中。因为反向多播本身就对每个泵浦源有3dB的损耗,所以如果只连接一个泵浦源,输出功率也是保持不变的。但在交换时间(小于500ns)里,OA内会有一次比较小的瞬时变化。不过可以用一个延时计时器抑制该变化,这样网络就不会受其影响了。最后,由于故障泵浦源没有再连接到增益介质中,所以维修泵浦源时不会影响链路。
  
  升级放大器的功能

  因为放大器的节点是传输网中最为普通的节点,所以放大器如果可以适应网络业务形式的变化,这对服务提供商就非常有利了。在安装了放大器后,服务提供商也许希望能从同一节点分插业务流。他们也许还需要向放大器中添加色散补偿功能,或者改变放大倍数。针对这些需求,如果在OA中集成具有可变衰减和多播功能的超快速交换机,即便是工作环境发生变化,OA也能适应未来网络发展的需要。
  

图4
  

  使用了交换机的多播功能后,就可以在OA中加入可变的分流器而不引入附加损失(a)。交换机的快速可变光衰减功能可以改变放大器的增益。使用了交换元件后,还可以根据需要为链路加入色散补偿功能(b)。超快速交换元件还能够引入光分插复用器,并且对现有信道产生的影响很小(c)。

  图4a描述的就是可以向OA增加功能的一般结构。这种结构中,放大器里集成了一个超快速交换机,从而能应用于很多方面。图4b所示的是如何在放大器的节点内实现色散补偿。图4c所示的是引入可重配置的OADM(ROADM)后的情况。某些情况下,可以在不中断网络运行、并给网络带来最小影响的前提下为OA增加新的功能,例如从放大器节点升级到ROADM。

  还有一点值得讨论的是EDFA(由一根纤芯掺铒的光纤构成)的增益动力学。EDFA的工作原理是将外泵浦半导体激光器发射的光耦合进光纤,进而激发铒原子。C波段或者L波段的光信号进入光纤后会激励已被激发的铒原子,使它受激辐射出与入射光波长相同的光子,从而实现光放大。人们已经针对瞬间插入或分离信道等情况,深入研究了这一类放大器的瞬时增益动力学。这其中功率瞬间变化的持续时间非常重要,因为它能够引起暂时的性能恶化。而瞬间变化的持续时间与掺杂离子数量分布的动力学有关,并且远比离子的松弛时间短。不管怎样,硅基EDFA的瞬间变化持续时间很容易超过1ms。

  有一点需要强调,那就是OSNR和误码率(BER)会随增益瞬间变化而变化。这种情况在分插业务流时是很难避免的。尤其是在突然插入信道时,信道功率会出现突然降低,这时BER最高(OSNR值最低)。BER有时甚至会超过10-7,这在统计上是不可接受的,而且持续时间可达10µs量级。要解决这个问题,用一个集成了可变光衰减功能的超快速交换机就可以实现亚微秒级瞬间变化,也就可以避免BER/OSNR的变化了。对放大器而言,这样可以既不影响网络性能,又抑制了增益瞬间变化。
  
  交换器件带来的优势  

  OA中的超快交换技术提高了OA对故障的适应、恢复能力,使维护更方便,还增添了新功能。另外,这些交换动作可以在放大器系统内部完成,给运行中的通信链路带来的负面影响也最小。最后,用超快速光交换机比用装有光电探测管的分流耦合器好,因为超快速光交换机支持集成的多播和可变光衰减功能,所以便于监控和快速调节。

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:无线发射功率有待提高
下一篇:HUBER+SUHNER推出最新射频电子开关

射频和天线工程师培训课程详情>>

  网站地图