- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
常见通信RF指标的意义
EVM(误差矢量)
首先,EVM是一个矢量值,也就是说它有幅度和角度,它衡量的是“实际信号与理想信号的误差”,这个量度可以有效的表达发射信号的“质量”——实际信号的点距离理想信号越远,误差就越大,EVM的模值就越大。
发射信号的EVM与SNR
EVM是如何与SNR扯上关系的呢?这里摘录一段度娘上的文献:
这是发射机天线口处的信噪比,反映的是发射信号的“固有信噪比”。
在(一)中我们曾经解释过为什么发射信号的信噪比不是那么重要,原因有二:第一是发射信号的SNR往往远远高于接收机解调所需要的SNR;第二是我们计算接收灵敏度时参考的是接收机最恶劣的情况,即在经过大幅度空间衰落之后,发射机噪声早已淹没在自然噪声底之下,而有用信号也被衰减到接收机的解调门限附近。
但是发射机的“固有信噪比”在某些情况下是需要被考虑的,譬如近距离无线通信,典型的如802.11系列。
802.11系列演进到802.11ac的时候,已经引入了256QAM的调制,对于接收机而言,即便不考虑空间衰落,光是解调这样高阶的正交调制信号就已经需要很高的信噪比,EVM越差,SNR就越差,解调难度就越高。
这是发射机天线口处的信噪比,反映的是发射信号的“固有信噪比”。
在(一)中我们曾经解释过为什么发射信号的信噪比不是那么重要,原因有二:第一是发射信号的SNR往往远远高于接收机解调所需要的SNR;第二是我们计算接收灵敏度时参考的是接收机最恶劣的情况,即在经过大幅度空间衰落之后,发射机噪声早已淹没在自然噪声底之下,而有用信号也被衰减到接收机的解调门限附近。
但是发射机的“固有信噪比”在某些情况下是需要被考虑的,譬如近距离无线通信,典型的如802.11系列。
802.11系列演进到802.11ac的时候,已经引入了256QAM的调制,对于接收机而言,即便不考虑空间衰落,光是解调这样高阶的正交调制信号就已经需要很高的信噪比,EVM越差,SNR就越差,解调难度就越高。
作为发射机性能指标的EVM
这里我想拓开来讲一下EVM在衡量发射机性能上的作用。
做802.11系统的工程师,往往用EVM来衡量Tx线性度;而做3GPP系统的工程师,则喜欢用ACLR/ACPR/Spectrum来衡量Tx线性性能。
从起源上讲,3GPP是蜂窝通信的演进道路,从一开始就不得不关注邻信道、隔信道(adjacent channel, alternative channel)的干扰(北邮通信工程毕业的学生应该都学过怎么按照六边形小区推算最近的邻频小区)。换句话说,干扰是影响蜂窝通信速率的第一大障碍,所以3GPP在演进的过程中,总是以“干扰最小化”为目标的:GSM时代的跳频,UMTS时代的扩频,LTE时代RB概念的引入,都是如此。
而802.11系统是固定无线接入的演进,它是秉承TCP/IP协议精神而来,以“尽最大能力的服务”为目标,802.11中经常会有时分或者跳频的手段来实现多用户共存,而布网则比较灵活(毕竟以局域网为主),信道宽度也灵活可变。总的来说它对干扰并不敏感(或者说容忍度比较高)。
通俗的讲,就是蜂窝通信的起源是打电话,打不通电话用户会去电信局砸场子;802.11的起源是局域网,网络不好大概率是先耐着性子等等(其实这时候设备是在作纠错和重传)。
这就决定了3GPP系列必然以ACLR/ACPR一类“频谱再生”性能为指标,而802.11系列则可以以牺牲速率来适应网络环境。
具体说来,“以牺牲速率来适应网络环境”,就是指的802.11系列中以不同的调制阶数来应对传播条件:当接收机发现信号差,就立即通知对面的发射机降低调制阶数,反之亦然。前面提到过,802.11系统中SNR与EVM相关很大,很大程度上EVM降低可以提高SNR。这样我们就有两种途径改善接收性能:一是降低调制阶数,从而降低解调门限;二是降低发射机EVM,使得信号SNR提高。
因为EVM与接收机解调效果密切相关,所以802.11系统中以EVM来衡量发射机性能(类似的,3GPP定义的蜂窝系统中,ACPR/ACLR是主要影响网络性能的指标);又因为发射机对EVM的恶化主要因为非线性引起(譬如PA的AM-AM失真),所以EVM通常作为衡量发射机线性性能的标志。
EVM与ACPR/ACLR的关系
很难定义EVM与ACPR/ACLR的定量关系,从放大器的非线性来看,EVM与ACPR/ACLR应该是正相关的:放大器的AM-AM、AM-PM失真会扩大EVM,同时也是ACPR/ACLR的主要来源。
但是EVM与ACPR/ACLR并不总是正相关,我们这里可以找到一个很典型的例子:数字中频中常用的Clipping,即削峰(嗯,不是那位辽国南院大王、前丐帮帮主)。Clipping是削减发射信号的峰均比(PAR),峰值功率降低有助于降低通过PA之后的ACPR/ACLR;但是Clipping同时会损害EVM,因为无论是限幅(加窗)还是用滤波器方法,都会对信号波形产生损伤,因而增大EVM。
PAR的源流
PAR(信号峰均比)通常用CCDF这样一个统计函数来表示,其曲线表示的是信号的功率(幅度)值和其对应的出现概率。譬如某个信号的平均功率是10dBm,它出现超过15dBm功率的统计概率是0.01%,我们可以认为它的PAR是5dB。
PAR是现代通信系统中发射机频谱再生(诸如ACLP/ACPR/Modulation Spectrum)的重要影响因素。峰值功率会将放大器推入非线性区从而产生失真,往往峰值功率越高、非线性越强。
在GSM时代,因为GMSK调制的衡包络特性,所以PAR=0,我们在设计GSM功放的时候经常把它推到P1dB,以得到最大限度的效率。引入EDGE之后,8PSK调制不再是衡包络,因此我们往往将功放的平均输出功率推到P1dB以下3dB左右,因为8PSK信号的PAR是3.21dB。
UMTS时代,无论WCDMA还是CDMA,峰均比都比EDGE大得多。原因是码分多址系统中信号的相关性:当多个码道的信号在时域上叠加时,可能出现相位相同的情况,此时功率就会呈现峰值。
LTE的峰均比则是源自RB的突发性。OFDM调制是基于将多用户/多业务数据在时域上和频域上都分块的原理,这样就可能在某一“时间块”上出现大功率。LTE上行发射用SC-FDMA,先用DFT将时域信号扩展到频域上,等于“平滑”掉了时域上的突发性,从而降低了PAR。
动态范围,温度补偿与功率控制
动态范围,温度补偿和功率控制很多情况下是“看不到”的指标,只有在进行某些极限测试的时候才会表现出它们的影响,但是本身它们却体现着RF设计中最精巧的部分。
“重剑无锋,大巧不工。”
——独孤求败。
如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训
上一篇:电容的ESR知识汇总
下一篇:老射频工程师总结:频谱仪使用实践