• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 微波/射频 > 射频工程师 > 通俗理解电路及电磁场(下)

通俗理解电路及电磁场(下)

录入:edatop.com    点击:
高速观察波形

虽然现在我们使用的频率越来越高,但是目前的测试设备也越来越先进,远远超出使用的频率。我们假设用泰克(Tektronix)TDS3000C系列示波器观察300MHz高频信号波形。TDS3000C的采样频率是5GS/s,可以理解为每秒钟采样5G次,300MHz信号一个周期可以采样16.7个点,基本上可以比较清晰反应一个完整的周期了,假设信号从直流电压Vdc开始按300MHz正弦波规律变化。
 
 

 

1 / 4周期

         
设导线单根长度为0.25米,对300MHz信号来说就是1 / 4波长长度,信号电压为Vdc,我们把信号按正弦波规则从Vdc降为0V,所花时间为1 / 4周期,1周期 = 1 / 300M = 3.33nS。传输线上电场和磁场分布如下图:
 
 
因为信号电压按300MHz正弦波规则从Vdc下降为0V,如上图,靠近信号源的(1)处的电压被信号源牵引而电压降低,对应的电场就变小,相应的,(1)对(2)产生影响,依次类推到负载(R)。为了分析的更清晰,我们对上图的各点进行进一步的量化,假设负载为20欧姆,Vdc电压为20V,取电池中心点为参考点,那么正极为10V,负极为-10V,四分之一周期后的波形如下图所示。
 
         
标识(1)处正极为10*Cos(75) = 2.6V,(2)处正极为10*Cos(60)=5V,依次类推。两导线对称点之间的电压从负载20V到信号源0V依次变小,必然在两根导线线方向上也表达出来。比如(1)与(2)的线电压差就有2.4V,因为理想导线内部是不允许有电场的,那么这个因为电场正弦分布引起的导线线电压差必须要由另外一个反电动势来抵消。这个时候,必须要降低(1)、(2)之间的导线电流,电流对应的是磁场,变小的磁场产生一个反电动势抵消(1)、(2)的导线线电压差,依次类推到负载,于是导线上的电流也是按照正弦波规律从信号源的0A到负载最大值的1A。
         
以上感性的分析了四分之一周期300MHz的变化过程,这里面回避了机个问题。
 
 
1、信号源电压是正弦波变化,导线上的电场和磁场就一定是正弦波变化?相位就一定相同?
2、电压一定,负载一定,最大电流是一定的,若在这个电流下的正弦波磁场变化产生的反电动势满足不了导线线电压差,情况将如何?
这两个问题,前者确认是否只有正弦波才能符合传输线传输,后者提出了阻抗匹配概念,这两个问题在后面进一步讲解。
 
 
这两个问题,前者确认是否只有正弦波才能符合传输线传输,后者提出了阻抗匹配概念,这两个问题在后面进一步讲解。
 

 

1 / 2周期

    
信号源按300MHz正弦规则从正向最大值变为反相最大值,也就是1/2周期,传输线长度设为0.5米,也就是1/2波长,所对应的传输线电场、磁场波形。
 
注意在传输线中心点位置电压为0V,左边电场向上,右边电场向下。左边导线的电流也跟右边的相反。
 

3 / 4周期

    
信号源按300MHz正弦规再从反相最大值变为0V,也就是3/4周期,传输线长度仍为为0.5米,也就是1/2波长,当负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于左边再传过来一个1/4周期波,右边移出一个1/4周期。
 

一个及多个周期

    
信号源按300MHz正弦规则变化完整1个周期,电压从0开始变化,也就是相位从0开始,传输线长度为1米,即1个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了2个方向相反的电流圈。
 
 
信号源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈。
 
 
信号源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈,用圈表示,仅为形象简化,表示半个周期,紧挨着的相反的一对为一个周期。
 

如何成为一名优秀的射频工程师,敬请关注: 射频工程师养成培训

上一篇:GPS与GLONASS在射频硬件上的考虑
下一篇:通俗理解电路及电磁场(上)

射频和天线工程师培训课程详情>>

  网站地图