- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
射频氮化镓(GaN)技术正在走向主流应用
现在能够提供射频氮化镓器件的厂商主要有科锐、英飞凌、Macom、恩智浦、Qorvo和住友等厂商。(英飞凌在2016年7月已经宣布收购科锐的Wolfspeed部门,Wolfspeed提供碳化硅功率器件和碳化硅基氮化镓射频器件)。还有包括波音、Northrop Grumman和雷神等在内的军工厂商也在开发氮化镓和其他三五价技术。
氮化镓可用于制造场效应管(FET)。平面氮化镓场效应管和硅基的MOSFET类似,通过栅极控制电流从源极流向漏极。
不过制造工艺上氮化镓和CMOS不同。氮化镓的衬底是在高温下利用金属有机气相沉积(MOCVD)或者分子束外延(MBE)技术生长的。氮化镓与一般半导体材料的最大区别是禁带更宽。禁带宽度是表征价电子被束缚强弱程度的一个物理量,禁带越宽,对价电子的束缚越紧,使价电子摆脱束缚成为自由电子的能量越大。禁带宽度也决定了自由移动电子的质量。
氮化镓的禁带宽度是3.4 eV(电子伏特),另一种宽禁带材料碳化硅是3.3eV,对比一下,现在的射频工艺砷化镓(GaAs)的禁带宽度是1.4eV,而硅是1.1eV。
用氮化镓和碳化硅等宽禁带材料制造的芯片能够承受更高的电压,所以与其他技术相比,输出能量密度更高,可工作环境温度也更高。"此外,氮化镓器件在技术上还有很多优势,例如更高的输出阻抗。高输出阻抗可以使氮化镓器件的阻抗匹配和功率组合更容易,这样可以覆盖更宽的频率范围,提高射频功放器件的适用性。"NI AWR事业部技术市场总监David Vye说道。
氮化镓器件有什么缺点呢?缺点就是太贵了,现在绝大部分射频氮化镓器件是用又贵又小的碳化硅做衬底生产的。氮化镓具备独特的宽禁带特性,但太贵了!
除了成本,射频氮化镓器件也有一些其他的问题。"设计工程师需要精确的氮化镓器件模型来进行电路仿真,完成现代通信系统所需要的高效率、高线性度的功放阻抗匹配与偏置电路设的设计。"Vye说道,"此外,工程师正准备把氮化镓应用到一些新领域,例如包络跟踪、数字预校正、谐波负载牵引测试仿真技术等。这些应用都依赖极大的数据集,因为要求测试系统又快又准确,还要自适应。"
闂備浇顕х换鎰崲閹邦喒鍋撳顐㈠祮闁靛棗鍊婚幑鍕瑹椤栨碍娅婇梻渚€娼ч敍蹇涘焵椤掑嫬钃熼柕鍫濐槹閸嬨劍銇勯弽銊︾殤濠⒀勬礋閺岋綁骞樼憴鍕€婇梺鐟板槻椤戝銆佸鈧幃銏ゅ川婵犲嫭娈紓鍌氬€风粈渚€顢栭幋锕€绠柨鐕傛嫹 | More...
闂備浇顕х换鎰崲閹邦喒鍋撳顐㈠祮闁靛棗鍊婚幑鍕瑹椤栨碍娅婇梻渚€娼ч敍蹇涘焵椤掑嫬钃熼柕鍫濐槹閸嬨劍銇勯弽銉モ偓鏍偓姘炬嫹婵犵數鍋為崹鍫曞箹閳哄懎鍌ㄩ柣鎰靛墻濞堜粙鏌ㄩ悤鍌涘闂傚倷鑳剁涵鍫曞疾濠靛鈧焦绻濋崶鑸垫櫓闂佸憡娲﹂崜娑㈡⒔閸曨兛绻嗛柕鍫濇噹椤忓瓨淇婇顒佸
闂備浇顕х换鎰崲閹邦喒鍋撳顐㈠祮闁靛棗鍊垮畷濂稿即閻愭妲洪柣鐔哥矌婢ф鏁幒鏃€鏆滈柟鎯板Г閻撶喐銇勯顐㈠箻缂佷胶鍏橀弻锝夘敇閻愭祴鎸冮梺鐟板槻椤戝鐛幋锕€绠涢梻鍫熺⊕閸婂酣姊绘担铏广€婇柡鍛箞閵嗕焦绻濋崶鑸垫櫓闂佸憡娲﹂崢鐣屸偓姘哺閺屾盯骞樺璇蹭壕闂佸搫鐭夐幏锟�
闂傚倷绀佺紞濠傖缚瑜旈、鏍幢濡炵粯鏁犻梺閫炲苯澧い顓炴健瀹曠懓鈽夊▎鎰絿闂備焦鎮堕崐鏇灻归悜钘夌閻庯綆鍠栫粻鏌ユ煙娴煎瓨娑ч柟顔荤窔濮婅櫣鍖栭弴鐔哥彇濡炪們鍨归敃顏堛€佸▎鎾崇妞ゆ挾鍠庨悵浼存⒑閸涘﹥瀵欓柍褜鍓熷濠氭晸閿燂拷
婵犵數濮伴崹褰掓倶閸儱鐤炬繝闈涱儏閸氬綊骞栨潏鍓хɑ濠殿垰銈搁弻鐔烘喆閸曨偄袝闂佸憡鍩冮崑鎾绘煟鎼淬値娼愰柟顔肩埣瀹曟洟骞庨挊澶屽幒闂佸吋绁撮弲婊堝汲濠婂牊鐓曟い鎰剁悼缁犳﹢鏌涘顓犳噰闁诡喛顫夌粭鐔煎炊瑜嶇粻鐟邦渻閵堝啫濡界紒顔奸叄楠炲螖閸涱喗娅㈤梺璺ㄥ櫐閹凤拷