- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
如何保护便携应用的高速数据线路
选择有效的ESD解决方案之考虑
选择有效的便携电子产品高速应用ESD解决方案有三项主要考虑因素,分别是尺寸、电容和ESD钳位能力。封装尺寸要求由设计人员确定,但对便携产品而言一个通用准则是“越小越好”。
对于高速数据线路来说,增加电容可能降低信号完整性。电容可能通过设计元件以及电路板本身来增加数据线路,当设计人员开始增添ESD保护功能时仅有极少空间剩下用来增加额外电容。每项设计各不相同,并且对ESD保护电容的要求可能也不相同,具体取决于其它设计元件所使用的总电容预算为多少,不过一个通用的准则是电容越低越好。
本文将集中讨论便携应用最常用的高速接口,即USB2.0(480Mb/s)。在这个数据率,保护解决方案必须拥有低于1.5pF的电容,这样才能保持数据线路的完整性。
选择有效的ESD解决方案的最终考虑因素在于ESD钳位能力。ESD保护器件的目的在于将数千的ESD输入电压降低至IC受到保护的安全电压,并将电流与IC分流开来。虽然所需ESD波形的输入电压和电流在过去几年未曾变化,但保护IC需要的安全电压电平却降低。过去,IC设计对ESD而言更为强固,能够处理更高的电压,因此任意选择能够在IEC61000-4-2 level 4要求下存续的保护二极管就足够了。而面对更新、更加敏感的IC,设计人员如今不仅需要确保保护器件能在IEC61000-4-2 level 4标准下存续,还需要确认保护器件将在足够低的电压对ESD脉冲进行钳位,以此确保IC不被损坏。当为给定应用选择最佳保护器件,设计人员必须考虑ESD保护器件对入侵ESD如何钳位。IC敏感度因设计不同而不同,但关于钳位电压的一个通用准则是“越低钳位电压越好”。
当选择ESD保护元件时,封装尺寸和电容能够通过查看产品数据表来轻易确定。然而,钳位电压要定义起来则有点麻烦,因为没有相关标准规定如何在ESD事件中测量钳位电压。本文接下来将集中讨论如何检测ESD保护二极管的钳位电压。
ESD波形
在系统级定义典型ESD事件的最常用波形是IEC61000-4-2波形,这种波形特别之处在于其亚纳秒上升时间和大电流电平。这种波形的规范涉及4个等级的ESD脉冲幅度。大多数设计人员需要使产品合乎最高等级的8kV接触放电或15kV空气放电要求。
多数ESD保护元件的数据表会标明符合IEC61000-4-2规范的最大额定电压,这显示元件不会被指定等级的ESD脉冲所损坏。但是,这个额定电压并不会给出任何有关ESD等高频、大电流瞬态事件的钳位电压信息。与数据表上规定的直流(DC)击穿电压相比,这些瞬态事件发生时保护二极管的钳位电压在很大程度上更高。但要规定IEC61000-4-2规范的钳位电压较难,因为它被拟定成为一个系统级的通过/不通过规范。为了将这个规范运用到保护元件上,很重要的是不仅要检查保护元件是通过还是不通过,还要看它怎样钳位ESD电压至低位以及它在保护敏感元件方面表现如何。
比较保护二极管钳位电压的最佳途径是采用示波器来对发生ESD事件期间通过二极管的实际电压波形进行屏幕截图。这可以通过图1所示的测试设置来实现。
捕获ESD钳位电压屏幕截图的测试设置。 |
这个测试设置将给出发生ESD事件时通过保护元件的电压波形,这波形将显示沿着这条线路的IC在ESD事件期间将遭受的电压电平。当查看IEC61000-4-2测试中ESD保护器件的电压波形时,可以发现通常有一个初始电压尖峰以及跟随在后面的第二个尖峰,而最终电压波形将趋向水平。初始电压尖峰是由IEC61000-4-2波形中的初始电流尖峰和测试结构导致的过冲所造成。但是,初始尖峰持续时间较短,这就限制了传递至IC的能量。保护器件的钳位性能在初始过冲之后的曲线中得到最佳显现。第二个尖峰是主要问题所在,因为这时的电压波形持续较长时间,增加了IC将遭受的总能量。在下面的研究中钳位电压定义为第二个尖峰的最大电压。
高速数据线路保护的选择
有两种主要的ESD保护选择拥有面向便携应用USB2.0高速保护的适合尺寸和电容规范,