• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 基于AT89S52和K9F6408UOA的语音数字系统设计

基于AT89S52和K9F6408UOA的语音数字系统设计

录入:edatop.com    点击:

数据采集技术涉及领域广,采集信号的动态范围宽,处理数据量大,对系统实时性能要求高。以数字信号的形式对信号进行处理,具有处理速度快、灵活、精确、抗干扰能力强、体积小及可靠性高等优点,满足了对信号快速、精确、实时处理及控制的要求。本设计利用了数字电路的这些优点,对传统的模拟录音电路进行了改进,以较低的成本使性能得到了提高。

1 方案论证
   
本设计以数字化信号的形式对音频信号进行处理,有以下3种方案可供选择:
    1)直接利用语音芯片进行语音录放。Winbond公司的ISD系列语音芯片采用了Chip-Corded专利技术,声音无需A/D转换和压缩就可直接存储,不存在A/D转换误差,在一个记录位(BIT)可存储多达250级声音信号,相当于通常A/D技术记录容量的8倍。片内集成了晶体振荡器、麦克风前置放大器、自动增益控制、抗混叠滤波器、平滑滤波器、声音功率放大器等,只需很少的外围器件,就可构成一个完整的声音录放系统。
    2)利用DSP对采样信号进行处理。DSP是专门为快速实现各种信号处理算法而设计的、具有特殊结构的微处理器,其处理速度远远超过一般的CPU。
    3)利用AT89S52作为系统主控芯片,利用ADC0809对音频信号进行采集和A/D转换,将转换得到的数字化音频信号存储到扩展的数据存储器中,利用软件对信号进行数字滤波,最后通过单片机输出PWM信号来完成放音。
    从经济和技术等因素考虑对上述3种方案进行比较:直接利用语音芯片可以减少很多外围电路,电路设计方便,但语音芯片使用不够灵活。DSP具有强大的数字信号处理功能,使用灵活,但该芯片价格较高,不适于一般的应用。方案3)中器件均为常用芯片,易于获取,且价位不高。因此,方案3)为最佳设计方案。

2 硬件设计
   
图1为系统硬件结构图。音频信号通过拾音器将声音信号转换为可以处理的电信号,前置放大电路用来对拾音器的输出进行放大,与A/D转换电路匹配,A/D转换电路实现对模拟信号的编码。微处理器是系统的核心,它用来对数字化音频信号进行处理和存储,协调系统各个部分的工作,输出PWM波来驱动输出电路。


2.1 单片机
   
单片机是系统的控制中心,它主要实现以下的功能:控制LCD显示语音信号的相关信息,控制按键识别和功能选择;控制音频数据的采集并存储在Flash ROM,放音时读取Flash ROM中数据,用软件方法产生PWM脉冲信号,实现语音的存储和回放。
2.2 声音信号拾取、放大电路
   
声音信号拾取电路就是将声音信号转换为电信号的装置。本设计选用麦克风,它是一种声敏电阻,其阻值随外界声音信号的变化而变化,将其串联在电路中,电阻的变化形成电压的变化,经过电容通交隔直,就得到了表征声音信号特征的电信号。
    然而由于声音信号拾取电路输出电压的幅值很小,为20~25 mV,若将该信号直接与A/D转换电路相连,由于A/D转换器最小分辨电压也为毫伏数量级,会产生很大的误差,为了保证系统的精度,在和A/D转换电路相连之前,需串联一个放大电路,考虑到声音信号拾取电路的输出信号很小,放大电路的失真度和噪声对系统的精度影响最大,故将其设计为抗共模干扰强的并联负反馈放大电路,由于音频信号的频宽较大,故选用宽频带,低输出阻抗的双运放NE5532。
2.3 A/D转换电路
   
A/D转换电路由A/D转换器ADC0809与系统处理器AT89S52组成,主要实现对放大后的声音信号进行采样。ADC0809与AT89S52的电路连接如图2所示。


    从图2中可以看到,把ADC0809的ALE信号与START信号接在一起,这样可使得在信号的前沿写入(锁存)通道地址,紧接着在其后沿就启动转换。启动A/D转换只需要一条P2.7=0指令。在此之前,要将P2.7清零并将最低3位与所选的通道对应的地址送入数据指针DPTR中。ADC0 809的转换结束信号EOC取反后与AT89S52的相连,采用中断方式读取A/D转换结果,并启动下一次A/D转换。也可定时启动A/D转换,并读取上次转换结果。
2.4 声音编码存储电路
   
在采样时每一采样点都会产生1字节的数字编码信号,由于采样的频率为8 kHz,若录音15 min,则所需的存储空间为7.031 25 MB,故系统选用8 MB的Flash存储器K9F6408U0A,由于该存储器的地址线和数据线可复用,这样可节省I/O接口。K9F6408UOA的最大优点在于其命令、数据和地址均可通过8条I/O接口线与主控制器进行通信,大大简化了系统的连线,增强了系统的稳定性。除8条I/O接口线外,K9F6408 UOA还包括以下控制线,1)CLE:命令锁存使能端,高电平有效。在信号的上升沿,命令信号可通过I/O口锁入命令寄存器;2)ALE:地址锁存使能端,高电平有效。在信号的上升沿,地址信号可通过I/O口锁入地址寄存器;3):片选线,低电平有效。在页编程或块擦除操作期间或器件处于忙状态时,高电平将被忽略,4):写使能口,命令、地址和数据在信号的上升沿被锁定;5):读使能口,在该口的下降沿将数据送到I/0口线上,并使内部列地址寄存器加1;6)WP:写保护口,低电平有效,当其为低时,编程擦除操作禁止;7)R/B:操作状态指示信号。为低时,表示正在编程、擦除或读操作,操作结束后变高。利用上述控制线,从而方便实现系统主控制器对K9F6 408U0A的控制。AT89S52单片机与K9F6408UOA存储接口电路如图3所示。

[p]


2.5 PWM输出电路
   
本设计采用单片机输出PWM信号驱动音频放大电路,PWM输出电路如图4所示。PWM是一种利用微处理器的数字输出控制模拟电路的有效技术,对一系列脉冲的宽度进行调制,等效获得所需波形,并且由于没有使用D/A转换器,系统成本减少很多。PWM的优点是从处理器到被控系统信号都是数字形式的,无需进行D/A转换。让信号保持为数字形式可将噪声影响降到最小。此外PWM信号很容易通过MCU的软件进行控制,即使电路稍微有些系统误差,易于通过软件进行校正。


    图4中,利用单片机的P1.7引脚输出一定宽度的PWM信号,通过三极管整形后,作用在惯性环节上,得到的输出信号PWMOUT将作用在音频功放电路上,还原为声音。
2.6 音频功率放大电路
   
为了使系统有足够大的输出,驱动扬声器发声,便于调节音量,在PWM输出电路后使用了音频信号功率放大器LM386构建功率放大电路,如图5所示。


    LM386型音频功率放大器主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在其引脚1和8之间外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6 V电源电压下,其静态功耗仅为24 mW,使得LM386特别适用于电池供电的场合。PWMOUT为PWM输出电路的输出,扬声器为8 Ω,0.5 W。经过调试发现将电源+5 V用10μF和0.1μF的电容滤波后,会减小很多噪声,效果较好。

3 系统软件设计
   
系统具有录音、放音、暂停、清除存储内容等功能,各种功能由按键来选择,系统首先扫描各个按键的状态,如果有按键按下,就转往相应的处理程序,系统程序流程如图6所示。


3.1 系统初始化程序
   
系统初始化程序主要对单片机中断、定时器、LCD初始化、键盘、PWM、K9F6408UOA存储接口,以及ADC0809地址、程序中要用到的各个变量进行设置。
3.2 按键扫描程序
   
由于录音和暂停是由和外部中断引脚相连的2个按键来设置,一旦按键按下就进入录音或放音程序,所以按键扫描程序用于扫描放音键和清除键是否按下。
3.3 录音程序
   
与外部中断O相连的按键按下,则进入录音程序。
    录音过程实质上是启动ADC0809对模拟音频信号进行采样,并将A/D转换结果存储到外围数据存储器中的过程,故其主要包含对ADC0809进行读取,对外围数据存储器进行写入两个部分。
    提取声音数据时,要注意采样频率、采样位数、存储容量与存储时间的关系,通常8 kHz的采样频率和8位的采样位数可获得清晰的语音以及较好的音乐声,并且占有较少的存储空间。
    以8 kHz的采样频率启动ADC0809,并读取上次采样结果,写到外扩Flash存储器的代码片段如下:
[p]
3.4 放音程序
   
若P1.O按下,则执行放音程序。放音过程实质上是读取外围数据存储器中的数据,将其转化为一定宽度的PWM波,进行输出的过程。读取K9F6408UOA的子函数如下:
     
  
    产生PWM波形的步骤:1)设置定时器,产生定时中断,若采样率为11.025 kHz,则设置定时器的定时中断频率为11.025 kHz;2)初始化PWM模块,产生11.025 kHz的PWM波形;3)等待定时器中断,在中断处理程序中取采样数据,并设置PWM占空比寄存器,判断声音是否播放完成。若完成,则关定时器中断,并停止PWM输出。
3.5 暂停程序
   
在录音过程中,如果需要暂时停止录音可以按下暂停键进入暂停状态,再次按下暂停键可以返回暂停以前的状态。程序中设置了一个变量来指示现在是应该暂停还是恢复。
3.6 存储器内容清除程序
   
当存储器内容已满,而又需要录音时,可以按下清除按键,清除一定容量的内容,供用户再次使用。
    擦除:以块为单位进行擦除。代码片段如下。

   

4 调试注意事项
   
系统进行调试时,应注意以下方面:
    1)由于在PCM(Pulse Code Modulation)编码及DPCM编码模式下都要采用8 kHz的采样率,所以,每次压缩中断服务程序必须在不超过125 μs的时间内完成,因此,压缩录音处理程序的代码必须进行最大可能的优化,以减少程序执行时间,以免采样和数据处理或信息显示发生冲突,也可避免在中断采样时造成采样点的丢失。
    2)在选择ADC0809的时钟时,经典选择是640 kHz左右,最初选择将单片机的ALE端4分频后作为ADC0809的时钟信号,但发现影响了LCD的输出显示。将ALE改为2分频后(用1 M触发)作为ADC0809的时钟信号,问题得到解决。
    3)使用MAX813L复位芯片替代RC复位电路,使电路可靠复位.结合软件监控实现看门狗功能。
    4)当采样频率为8 kHz,字长为8位时,存储语言时长超过15 min,回放语音质量良好。

5 结束语
   
利用K9F6408UOA 8 MB NAND Flash存储器和单片机PWM功能可为单片机的应用增加语音功能。对声音采样数据的存储方式是用直接的、原始的采样数据。在具体的实际应用中,可选用内嵌A/D转换器的STC12C5A08AD,可省去外扩ADC0809,使电路更简洁。创新之处在于不使用专用的语音芯片,实现使单片机应用系统语音的存储与回放。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:基于DVI接口的LED视频控制系统研究
下一篇:基于SoPC Builder的电子系统的开发

射频和天线工程师培训课程详情>>

  网站地图