• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 51单片机RTL8019AS网卡驱动程序

51单片机RTL8019AS网卡驱动程序

录入:edatop.com    点击:

SNMP网管板使用了RTL8019AS 10M ISA网卡芯片接入以太网。选它的好处是:NE2000兼容,软件移植性好;接口简单不用转换芯片如PCI-ISA桥;价格便宜2.1$/片(我的购入价为22元RMB/片);带宽充裕(针对51);较长一段时间内不会停产。8019有3种配置模式:跳线方式、即插即用P&P方式、串行Flash配置方式。为了节省成本,我去掉了9346而使用X5045作为闪盘存储MAC地址和其他可配置信息。P&P模式用在PC机中,这里用不上。只剩下跳线配置模式可用,它的电路设计参考REALTEK提供的DEMO板图纸。一天时间就可以完成,相对来说硬件设计比较简单。

  与这部分硬件相对应的软件是网卡驱动。所谓驱动程序是指一组子程序,它们屏蔽了底层硬件处理细节,同时向上层软件提供硬件无关接口。驱动程序可以写成子程序嵌入到应用程序里(如DOS下的I/O端口操作和ISR),也可以放在动态链接库里,用到的时候再动态调入以便节省内存。在WIN98中,为了使V86、WIN16、WIN32三种模式的应用程序共存,提出了虚拟机的概念,在CPU的配合下,系统工作在保护模式,OS接管了I/O、中断、内存访问,应用程序不能直接访问硬件。这样提高了系统可靠性和兼容性,也带来了软件编程复杂的问题。任何网卡驱动都要按VXD或WDM模式编写,对于硬件一侧要处理虚拟机操作、总线协议(如ISA、PCI)、即插即用、电源管理;上层软件一侧要实现NDIS规范。因此在WIN98下实现网卡驱动是一件相当复杂的事情。

  我这里说的驱动程序特指实模式下的一组硬件芯片驱动子程序。从程序员的角度看,8019工作流程非常简单,驱动程序将要发送的数据包按指定格式写入芯片并启动发送命令,8019会自动把数据包转换成物理帧格式在物理信道上传输。反之,8019收到物理信号后将其还原成数据,按指定格式存放在芯片RAM中以便主机程序取用。简言之就是8019完成数据包和电信号之间的相互转换:数据包<===>电信号。以太网协议由芯片硬件自动完成,对程序员透明。驱动程序有3种功能:芯片初始化、收包、发包。

  以太网协议不止一种,我用的是802.3。它的帧结构如图1所示。物理信道上的收发操作均使用这个帧格式。其中,前导序列、帧起始位、CRC校验由硬件自动添加/删除,与上层软件无关。值得注意的是,收到的数据包格式并不是802.3帧的真子集,而是如图2所示。明显地,8019自动添加了“接收状态、下一页指针、以太网帧长度(以字节为单位)”三个数据成员(共4字节)。这些数据成员的引入方便了驱动程序的设计,体现了软硬件互相配合协同工作的设计思路。当然,发送数据包的格式是802.3帧的真子集,如图3所示。


 

  有了收发包的格式,如何发送和接收数据包呢 如图4所示,先将待发送的数据包存入芯片RAM,给出发送缓冲区首地址和数据包长度(写入TPSR、TBCR0,1),启动发送命令(CR=0x3E)即可实现8019发送功能。8019会自动按以太网协议完成发送并将结果写入状态寄存器。如图5所示,接收缓冲区构成一个循环FIFO队列,PSTART、PSTOP两个寄存器限定了循环队列的开始和结束页,CURR为写入指针,受芯片控制,BNRY为读出指针,由主机程序控制。根据CURR==BNRY+1 可以判断是否收到新的数据包,新收到的数据包按图2格式存于以CURR指出的地址为首址的RAM中。当CURR==BNRY时芯片停止接收数据包。如果做过FPGA设计,用过VHDL,可以想象到硬件芯片的工作原理。此处,设计2个8bit寄存器和一个2输入比较器,当收到数据包时,接收状态机根据当前状态和比较器结果决定下一个状态,如果CURR=BNRY,进入停收状态;反之,CURR按模增1。8019数据手册没有给出硬件状态机实现方法,说明也很简略,往往要通过作实验的方法推理出工作过程。比如,ISR寄存器不只和中断有关,当接收缓冲溢出时,如果不清ISR(写入FFH),芯片将一直停止接收。在流量较大时溢出经常发生,此时不清ISR,就会导致网卡芯片死机。

 

  明白了发送和接收数据包的原理,那么数据包又是怎样被主机写入芯片RAM和从芯片RAM读出的呢 如图6所示,主机设置好远端DMA开始地址(RSAR0,1)和远端DMA数据字节数(RBCR0,1),并在CR中设置读/写,就可以从远端DMA口寄存器里读出芯片RAM里的数据/把数据写入芯片RAM。

  何谓本地/远端DMA呢 如图7所示,“远端”指CPU接口侧;“本地”指8019的硬件收发电路侧。没有更深的意思,与远近无关,仅仅为了区分主机和芯片硬件两个接口端。这里的DMA与平时所说的DMA有点不同。RTL8019AS的local DMA操作是由控制器本身完成的,而其remote DMA并不是在无主处理器的参与下,数据能自动移到主处理器的内存中。remote DMA指主机CPU给出起址和长度就可以读写芯片RAM,每操作一次RAM地址自动加1。而普通RAM操作每次要先发地址再处理数据,速度较慢。

  在一些高档通信控制器上自带有MAC控制器,工作原理与8019的差不多,比如:Motorola 68360/MPC860T内部的CPM带有以太网处理器,通过设置BD表,使软件和硬件协同工作,它的缓冲区更大且可灵活配置。这些通信控制器的设计,体现了软硬件互相融合协同工作的趋势:软件硬化(VHDL),硬件软化(DSP),希望大家关注!

 

  如图7所示,8019以太网控制器以存储器(16K双口RAM)为核心,本地和远端控制器并发操作。这种体系结构满足了数据带宽的需要。8019拥有控制、状态、数据寄存器,通过它们,51单片机可以与8019通信。由于51资源紧张,在实现TCPIP协议栈时不要进行内存块拷贝,建议(1)使用全局结构体变量,在内存中只保存一个数据包拷贝,其他没有来得及处理的包保存在8019的16K RAM里;(2)使用查询方式而不用中断;(3)客户服务器模型中服务器工作于串行方式,并发模式不适合51单片机。

  芯片内部地址空间的分配如图8所示,其中0x00-0x0B(工作于8位DMA模式)用于存放本节点MAC地址,奇偶地址内容是重复放置的。如:MAC地址0000 1234 5678存放在0x00-0x0B中为000000001212343456567878,单地址和双地址的内容是重复的.一般使用偶数地址的内容,这主要是为了同时适应8位和16位的dma。Prom内容是网卡在上电复位的时候从93C46里读出来的。如果你没有使用93C46,就不要使用Prom,那么使用了93C46后如何获得网卡的地址呢 有两种方法,一是直接读93C46,二是读Prom。网卡MAC地址既不由93C46也不由Prom决定,而是由PAR0-PAR5寄存器决定。Prom只保存上电时从9346中读出的MAC地址(如果有93C46的话),仅此而矣。

 

[p]

 

  网卡MAC地址不是随便定义的,它的组成结构如图9所示。以太网的地址为48位,由ieee统一分配给网卡制造商,每个网卡的地址都必须是全球唯一的。共6个字节的长度。FF:FF:FF:FF:FF:FF为广播地址,只能用在目的地址段,不能作为源地址段。目的地址为广播地址的数据包,可以被一个局域网内的所有网卡接收到。合法的以太网地址第32位组播标志必须为0。例如:

  X0:XX:XX:XX:XX:XX

  X2:XX:XX:XX:XX:XX

  X4:XX:XX:XX:XX:XX

  X6:XX:XX:XX:XX:XX

  X8:XX:XX:XX:XX:XX

  XA:XX:XX:XX:XX:XX

  XC:XX:XX:XX:XX:XX

  XE:XX:XX:XX:XX:XX

  为合法以太网地址。上面的X代表0-F中的任一个。

  地址

  X1:XX:XX:XX:XX:XX

  X3:XX:XX:XX:XX:XX

  X5:XX:XX:XX:XX:XX

  X7:XX:XX:XX:XX:XX

  X9:XX:XX:XX:XX:XX

  XB:XX:XX:XX:XX:XX

  XD:XX:XX:XX:XX:XX

  XF:XX:XX:XX:XX:XX

  为组播地址,只能作为目的地址,不能作为源地址。组播地址可以被支持该组播地址的一组网卡接收到。组播地址主要用在视频广播,远程唤醒(通过发一个特殊的数据包使网卡产生一个中断信号,启动电脑),游戏(多个人在局域网里联机打游戏)里等。

  以下是一些具体的组播地址:

  地址范围

  01:00:5E:00:00:00---01:00:5E:7F:FF:FF 用于ip地址的组播,其他组播地址跟tcp/ip无关,不做介绍。

  网卡可以接收以下3种地址的数据包:

  第一种 目的地址跟自己的网卡地址是一样的数据包;

  第二种 目的地址为FF:FF:FF:FF:FF:FF广播地址的数据包;

  第三种 目的地址为跟自己的组播地址范围相同的数据包。

  在以太网的应用当中,如果你希望你的数据包只发给一个网卡,目的地址用对方的网卡地址;

  如果你想把数据包发给所有的网卡,目的地址用广播地址;

  如果你想把数据包发给一组网卡,目的地址用组播地址。

  其他用到的寄存器:

  CR---命令寄存器 TSR---发送状态寄存器 ISR---中断状态寄存器

  RSR---接收状态寄存器 RCR---接收配置寄存器 TCR---发送配置寄存器

  DCR---数据配置寄存器 IMR---中断屏蔽寄存器 NCR---包发送期间碰撞次数

  FIFO---环回检测后,查看FIFO内容

  CNTR0---帧同步错总计数器

  CNTR1---CRC错总计数器

  CNTR2---丢包总计数器

  PAR0-5---本节点MAC地址

  MAR0-7---多播地址匹配

  建议:将图形中寄存器名称标注上页号和地址偏移(如:BNRY 0页0x03),打印出此图,看图编程,直观且不容易出错。

  备注:收缓冲区、发缓冲区、数据存储区在16K双口RAM里的安排由用户自行决定,只要不引起冲突即可,以下源程序代码实现的只是其中的一种分配方案。

  部分源程序清单:

  struct ethernet{

  unsigned char status; //接收状态

  unsigned char page ; //下一个页

  unsigned int length; //以太网长度,以字节为单位

  unsigned int destnodeid[3]; //目的网卡地址

  unsigned int sourcenodeid[3]; //源网卡地址

  unsigned int protocal; //下一层协议

  unsigned char packet[1500]; //包的内容

  };

  void ne2000init()//ne2000网卡初始化

  {

  rtl8019as_rst();

  reg00=0x21; //选择页0的寄存器,网卡停止运行,因为还没有初始化。

  delay_ms(10); //延时10毫秒,确保芯片进入停止模式

  //使芯片处于mon和loopback模式,跟外部网络断开 [p]

  page(0);

  reg0a=0x00;

  reg0b=0x00;

  reg0c=0xE0; //monitor mode (no packet receive)

  reg0d=0xE2; //loop back mode

  //使用0x40-0x4B为网卡的发送缓冲区,共12页,刚好可以存储2个最大的以太网包。

  //使用0x4c-0x7f为网卡的接收缓冲区,共52页。

  reg01=0x4C; //Pstart 接收缓冲区范围

  reg02=0x80; //Pstop

  reg03=0x4C; //BNRY

  reg04=0x40; //TPSR 发送缓冲区范围

  reg07=0xFF;/*清除所有中断标志位*/

  reg0f=0x00;//IMR disable all interrupt

  reg0e=0xC8; //DCR byte dma 8位dma方式

  page(1); //选择页1的寄存器

  reg07=0x4D; //CURR

  reg08=0x00; //MAR0

  reg09=0x41; //MAR1

  reg0a=0x00; //MAR2

  reg0b=0x80; //MAR3

  reg0c=0x00; //MAR4

  reg0d=0x00; //MAR5

  reg0e=0x00; //MAR6

  reg0f=0x00; //MAR7

  initNIC(); //初始化MAC地址和网络相关参数

  //将网卡设置成正常的模式,跟外部网络连接

  page(0);

  reg0c=0xCC; //RCR

  reg0d=0xE0; //TCR

  reg00=0x22; //这时让芯片开始工作

  reg07=0xFF; //清除所有中断标志位

  }

  void send_packet(union netcard *txdnet,unsigned int length)//ne2000发包子程序

  {//发送一个数据包的命令,长度最小为60字节,最大1514字节需要发送的数据包要先存放在txdnet缓冲区

  unsigned char i;

  unsigned int ii;

  page(0);

  if(length<60) length=60;

  for(i=0;i<3;i++)

  txdnet->etherframe.sourcenodeid[i]=my_ethernet_address.words[i];

  txd_buffer_select=!txd_buffer_select;

  if(txd_buffer_select)

  reg09=0x40 ; //txdwrite highaddress

  else

  reg09=0x46 ; //txdwrite highaddress

  reg08=0x00; //read page address low

  reg0b=length>>8; //read count high

  reg0a=length&0xFF; //read count low;

  reg00=0x12; //write dma, page0

  for(ii=4;ii reg10=txdnet->bytes.bytebuf[ii];

  for(i=0;i<6;i++){ //最多重发6次

  for(ii=0;ii<1000;ii++) //检查txp为是否为低

  if((reg00&0x04)==0) break;

  if((reg04&0x01)!=0) break; //表示发送成功

  reg00=0x3E; [p]

  }

  if(txd_buffer_select) reg04=0x40; //txd packet start;

  else reg04=0x46; //txd packet start;

  reg06=length>>8; //high byte counter

  reg05=length&0xFF; //low byte counter

  reg00=0x3E; //to sendpacket;

  }

  bit recv_packet(union netcard *rxdnet)//ne2000收包子程序

  {

  unsigned char i;

  unsigned int ii;

  unsigned char bnry,curr;

  page(0);

  reg07=0xFF;

  bnry=reg03; //bnry page have read 读页指针

  page(1);

  curr=reg07; //curr writepoint 8019写页指针

  page(0);

  if(curr==0)

  return 0; //读的过程出错

  bnry=bnry++;

  if(bnry>0x7F) bnry=0x4C;

  if(bnry!=curr){ //此时表示有新的数据包在缓冲区里

  //读取一包的前18个字节:4字节的8019头部,6字节目的地址,6字节原地址,2字节协议

  //在任何操作都最好返回page0

  page(0);

  reg09=bnry; //read page address high

  reg08=0x00; //read page address low

  reg0b=0x00; //read count high

  reg0a=18; //read count low;

  reg00=0x0A; //read dma

  for(i=0;i<18;i++)

  rxdnet->bytes.bytebuf[i]=reg10;

  i=rxdnet->bytes.bytebuf[3]; //将长度字段的高低字节掉转

  rxdnet->bytes.bytebuf[3]=rxdnet->bytes.bytebuf[2];

  rxdnet->bytes.bytebuf[2]=i;

  rxdnet->etherframe.length=rxdnet->etherframe.length-4; //去掉4个字节的CRC

  //表示读入的数据包有效

  if(((rxdnet->bytes.bytebuf[0]&0x01)==0)||(rxdnet->bytes.bytebuf[1]>0x7F)||(rxdnet->bytes.bytebuf[1]<0x4C)||(rxdnet->bytes.bytebuf[2]>0x06)){

  //接收状态错误,或者next_page_start错误或者长度错误,将丢弃所有数据包

  page(1);

  curr=reg07; //page1

  page(0); //切换回page0

  bnry=curr-1;

  if(bnry<0x4C) bnry=0x7F;

  reg03=bnry; //write to bnry

  return 0;

  }

  else{//表示数据包是完好的.读取剩下的数据

  if((rxdnet->etherframe.protocal==0x0800)||(rxdnet->etherframe.protocal==0x0806)){

  //协议为IP或ARP才接收

  reg09=bnry; //read page address high

  reg08=4; //read page address low

  reg0b=rxdnet->etherframe.length>>8; //read count high

  reg0a=rxdnet->etherframe.length&0xFF; //read count low;

  reg00=0x0A; //read dma

  for(ii=4;iietherframe.length+4;ii++)

  rxdnet->bytes.bytebuf[ii]=reg10;

  }

  bnry=rxdnet->bytes.bytebuf[1]-1;//next page start-1

  if(bnry<0x4C) bnry=0x7F;

  reg03=bnry; //write to bnry

  return 1; //have new packet

  }

  }

  return 0;

  }

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:基于PLC和脉冲伺服在枕式包装机上的应用
下一篇:新型充电电路原理分析

射频和天线工程师培训课程详情>>

  网站地图