- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
UPS及配电系统的可用性分析案例
本文对UPS内部设计,UPS系统以及配电系统的可用性进行分析,给出了提升UPS电源系统可用性的思路。通过分析结果可以发现在UPS中采用旁路与市电独立的电源,加入多CPU监控,加入电池监控等措施可以明显提升UPS的可用性。另外一方面在系统层次上,选择模块化的结构,缩短维修更换时间,更多使用并联结构,也可以明显提升可用性。
UPS电源的可靠性
从单个UPS的设计来说,可以把整个产品按照模块进行划分,下面图中是一个典型的UPS系统结构图:
从图中可以看到,UPS各个模块之间的依赖关系比较复杂,但是还是可以分出串并联的关系如下:
辅助电源与所有其他模块都是串联的,因此辅助电源的可用性直接限制了系统能够达到的最高可用性等级;
控制模块与除辅助电源之外的其他模块也都是串联的,因此控制模块的可用性也会直接影响到系统总体可用性设计;
对于负载端来说,能够直接相连的只有旁路模块与逆变模块,而这两个模块是并联的;
PFC/整流模块与电池升压模块是并联的,之后再与逆变模块串联; 从能源提供者来讲,这里旁路电源与市电电源是两路独立的电源,而电池能源是由市电经过充电模块提供的。如果充电模块故障的话电池就没有能量存储,实际上也无法实现正常的UPS功能,因此市电-充电模块-电池也是串联的。这样可以画出整个UPS系统的可用性串并联路径图:
从这一路径关系里可以看到,总共存在3条并联的路径,而每一条路径各自又是由数个模块串联起来的。正与前面分析的一样,辅助电源与控制模块的可用性是串联在所有通路上的,因此如果这两者设计有缺陷的话UPS的可用性是无法做的很高的。电池回路串联有最多的模块数量,也是可用性最低的一条路径。
要提升系统的可用性首先要提升关键路径的可用性。从路径图上可以看到就是控制模块与辅助电源。辅助电源是整个UPS的关键点,如果辅助电源不工作整个UPS都将瘫痪。提升辅助电源可用性的方式可以有很多种方案:一种是改进设计,提升MTBF;一种是对辅助电源也适用并联冗余设计,提升可用性;再一种是对UPS的三条可用性路径分别使用不同的辅助电源,相当于把原来完全串联的路径改成并联。在UPS设计中可以混合使用这几种方式,由于上面三条可用性通路是并联的,而旁路通路本身是可用性最高的一条,因此最为推荐的设计就是优先提升旁路的可用性,对旁路单独使用一套辅助电源供电,并且这套电源的尽量采用简单的设计,以拥有高的MTBF。
控制模块同样也是影响到所有路径的关键点,也必须拥有高的可用性。参照辅助电源的处理方法,也可以给相对独立的旁路路径配备单独的控制模块,并且通过与其余控制功能协调工作来达到高可用性的目的。同样,旁路上的控制模块也要尽量简单,以提升可靠性。一种推荐的做法是旁路控制模块不断的检测UPS主控制模块的状态,如果发现主控制模块,则自动切换到旁路方式。此外,对于主控制模块来说也可以通过冗余的方式来提升可用性,比如采用双MCU结构,当一个MCU检测到另外一个MCU发生故障时可以接管另一个MCU的功能,或者采取紧急措施如转旁路来保证负载不断电。
对于UPS来说,电池是保证UPS能够在市电或者旁路断电发生时继续维持供电的关键,但是串联环节最多,也恰恰是可用性最为薄弱的环节。一般电池规格书里面会说明充电电流不要超过0.15CC,这就意味着电池在UPS满载放电放完之后要用数倍的时间才能重新充满,从这个意义上讲其可用性一般都在20%以下。但是由于电池并不是连续工作的,只要在电池放完前市电恢复,在重新充电的过程中也没有再发生断电,那么负载仍然不会受到影响。从这方面来看,电池的可用性在只会发生短时间的断电情况下还是很高的。
再重新来审视电池回路的可靠性,在电池与市电之间还有一个充电器模块环节。如果充电器损坏则电池在一次放完电之后就无法再充回,导致下一次市电停电时负载断电。但是充电器只是在电池需要充电时才会工作,因此如果能够及时对充电器的状态进行监控,在发现充电器异常时及时报警,就能够避免充电器故障带来的问题,从而提升整个UPS的可用性。对于电池也有一样的手段。电池在使用多次之后也会面临容量下降和失效的问题,但是如果能够通过电池状态监控发现电池失效并及时更换,也能够有效提升UPS的可用性。
UPS系统的可靠性
使用UPS电源系统时,不仅要定期对各主要元件进行检查,还要对UPS电池组的各个电池单元端电压与内阻进行检测。若发现其电池组的某个电池单元的端电压差值>0.4 V或者内阻>0.08Ω的时候,就应该断开工作异常的电池单元与电池组的连接导线,使用外置的独立充电器对工作异常的电池单元进行单独充电,将其充电电压(对12V蓄电池而言)保持在13.5~13.8 V之间,充电时间控制在10~12h.需要注意的是,UPS电源在使用过程中,电池组内的各个电池单元的充电会不一致,可能产生电池单元端电压以及电池内阻的不平衡。这些是无法依靠UPS电源系统内部充电回路对其充电而得到消除和校正的,若不及时对不平衡电池单元进行脱机均衡充电的话,可能导致上述问题更加严重。
为了解决这一瓶颈,可以在UPS系统中加入一个特性和电池互补的备用电源:在市电断电时的不需要很快反应,但是在长时间停电条件下能够持续提供电力,燃油发电机组就是最为合适的一个选择。因此在UPS系统配置上可以加入一个自动切换装置,在市电停电后切换到发电机组。这样一来能够极大的提升长时间断电条件下UPS系统的可用性。如此则UPS系统的可用性路径就成为
虽然在可用性路径里面多串联了一个市电与发电机切换用的ATS,增加了单调路径发生故障的概率,但是相对长时间断电带来的可用性问题来说还是值得的。
在UPS应用的另外一个分支是目前正在兴起的直流UPS系统。直流系统的思路是出于提高效率的目的,减少电源系统中间的转换环节,电力分配部分由原来的交流转换成直流。一个理想的直流UPS系统服务器应用从市电到12V终端的应用结构见下图:
可以看出,理想的直流UPS系统由于把交流系统中UPS的逆变环节与服务器电源中的PFC环节使用一个隔离型DC/DC环节来取代,从而可以改善效率。不过在直流UPS系统里面由于电池电压的变动范围是比较大的,为了取得更优化的效率曲线,在后级的服务器电源中也有可能使用两级结构。也就是通过一个简单的转换,减小服务器电源隔离DC/DC转换级的输入范围,以得到更好的节能效果。此时的结构见下图:
在这种直流UPS体系里面,不存在交流UPS中的旁路回路了,只存在一个市电到电池回路,这个回路也兼有充电器的作用。因此从单个UPS的可用靠性角度考虑,直流UPS可靠性链路只有两条,其中一条是两级变换加上辅助电源与控制板,另外一条是电池,见下图所示:
与交流UPS相比,直流UPS供电少了交流UPS的旁路回路,少了一个提升可用性的回路。但是电池是直接给负载供电的,可用性要高于交流UPS。因此在可用性的方面直流供电系统有得有失。但是另一个方面直流系统比交流UPS更容易进行并联,从而可以利用增加并联台数的方式增加可用性。
配电系统的可用性
对于一般的UPS系统应用来说,存在两种常见的配置方式,一种是双机热备份,见下图所示:
这种配置方式下两台UPS是完全并联工作的。基于前面可用性的原理,第二种配置方式比第一种会有更高的可用性。
这里就反映了可用性与可靠性的一个明显不同。对于两台并联冗余配置的UPS,由于器件多了一倍,那么出现故障的概率也会增高,因此从统计意义上来讲整个系统的MTBF会下降。但是由于其中一台出现故障之后仍然有一台在工作,只要出故障的UPS能够很快修复,负载就仍然处在有效的保护之中,可用性是提升的。从负载的角度衡量,评估系统的可用性比可靠性更加有意义。
在可用性的定义中,电源系统恢复的时间越短,则可用性也会越好。因此把电源系统设计为模块化易更换的结构,可以大大减小维护时间,从而使得可用性显着改善。
对于机房应用的场合,双总线的概念应用十分广泛。对于关键的服务器负载,一般都提供两组电源输入。相应的,在配电部分就也可以对应采用两组独立的电源总线。结合UPS本身就支持双总线输入,实际上可以构造出很多种组合形式。对不同方式进行比较后,比较推荐的一种典型的结构见下图所示:
这里把两组独立市电都供给两套UPS系统,然后每一套UPS系统作为一条总线来使用,可以充分发挥市电双总线,UPS内部双总线以及负载双总线高可用性的优势。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:详解电源各种认证标识
了解电源规格与性能
下一篇:论证UPS与发电机组的匹配兼容性