- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
TL431低压差直流电源参数参考及工作点设置
TL431作为一种精密稳压源,被大量应用在电子电路设计当中,由于拥有独特的动态抗阻,TL431也经常被作为稳压二极管来使用。稳压源在电路中的使用相当广泛,多数使用3个引脚构成,所以结构简单并且使用起来也比较方便。但是在只有较低电压电池供电时,稳压电源的供电需求有可能增加20%~40%的成本及体积。针对这种情况,本篇文章主要介绍了一种低压差稳压直流电源电路的设计方法,电路器件选用常规器件,成本低,并且具有很好的负载特性和电压稳定性。
电路工作原理
图1为低压层直流稳压电源电路原理图。该电路是由基准电压、电压放大和电流放大等3个环节组成。其中,基准电压由TL431产生,按图1中电路连接,当通过R0的电流在0.5~10 mA时可获得稳定的2.5 V基准输出。输出电压的具体数值由运算放大器UA确定,采用同相放大器的优越性在于其输入阻抗极大,可很好地将TL431输出的2.5 V电压与后级电路隔离,使其不受负载变化的影响。运放与电阻R3和R2组成比例放大环节,可对基准电压按要求进行比例放大输出,但输出电压最大不能超过运放的电源电压。
电流放大采用两个三极管,UA通过驱动调整管VQ2控制调整管VQ1,组成反馈实现电流放大环节,对输出电压进行调节,从而实现稳压输出。二极管VD在运放UA低压输出时,使调整管VQ2基极一发射极电压为负,使VQ2立即进入截止状态,电流Ic2迅速降低,VQ2的VCE升高导致VQ1的基极电压升高,使 VQ1的基极电流IB减少,进而减少输出电流ICQ1(βIB),反之同理。RL是输出负载,C0和C1是滤波电容。电路主要参数设计
控制环节设计
控制环节回路等效图如图2和图3所示,其中图2为比例电压增益原理图,图3为电流放大原理图。按照图2和图3,可得出控制环节回路方程: 式(2)中,Irg为运放UA的输出端1的输出控制电流。由式(2)可知,Irg通过控制VQ2的电流,IC2控制VQ1的基极电流,IB1、R8控制调节管VQ2,进而控制VQ1的输出电流IC1,VQ2是与 VQ1形成串联负反馈,无需进一步放大VQ1的输出电流IC1,用R8对IC1分流。电路输出电压Vcc为5 V,驱动额定负载是350 Ω,供电电源是标准7 V输出的电池。运算放大器选LM358,取R1、R2为10 kΩ,TL431电流范围是100~150 mA,选用R1=3 kΩ,符合要求。VCC=(1+R2/R1)x2.5=5 V。合理选取R8和R9的电阻值,使VQ1和VQ2均工作在线性区。
电网和负载波动情况下,Ib、Ie、Ucc尽量小,以减少损耗。设置静态工作点要选择合适的驱动管VQ1和偏置电阻R8、R9。VQ1的静态工作点为:
式中,Irg为运放的控制输出信号,Vin为电源电压,Vcc为5 V输出电压,RL为额定负载200Ω,VD是二极管导通电压0.7V。由式(3)和(4)可以确定VQ2的参数,然后,计算电阻R9:
使用放大倍数β1、β2在30-80之间的调整管,放大倍数较大的调整管消耗功率较小,但稳定性降低,这里选取β为50,设计供电电源在5.2~9 V之间波动,为了防止电源电压高时烧毁调整管VQ2,加约1 kΩ的电阻R8以限流保护。过流保护电路的设计
图3中,电阻Ri与三极管VQ3组成过流保护环节。输出电流过大时,取样电阻Ri上的电压大于0.7 V,VQ3导通,迫使调整管基极电压Vbe降低,直到关闭电源输出。R4=0.7/kIC。其中,LC为输出电流,K为最大过流系数,通常取值约1.5。 R7=(Vcc-Uce3)/Ie3≈Vrg/Ic3,限制Ic3不宜过大,以免VQ3过流损坏。试验
图4为设计的一个直流稳压电源模块,输入电源为直流5~9 V的蓄电池组,分别对设计电路进行电源特性和负载特性试验,其中负载特性试验以输入的6.5 V蓄电池模拟实际使用工作环境。图5为其试验记录结果。输出纹波试验数据,当电源输入电压为5-11 V,输出纹波为5~8 mV。
从实验当中能够看出,本设计的具有稳压精度高、负载特性好的一系列特点,最主要的是电路结构简单,可利用接口P0监测实际电源,此电路已投入生产,通过实践检验该电路设计性能可靠,耗电少,可很好满足单电源供电应用情况。
本篇文章主要介绍了一种低压差直流稳压电源设计,这种设计克服了在电源供电电压过低时造成的不便,并且节约了成本和时间,希望大家在阅读过本篇文章之后,能对这种方法有进一步的了解。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...
天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...
上一篇:半桥变换中TL494的性能分析及应用
下一篇:太阳能无线充电总体电路设计