• 易迪拓培训,专注于微波、射频、天线设计工程师的培养
首页 > 电子设计 > 电源技术 > 电源技术 > 对共模扼流圈的高速CCD驱动电路特点深入分析

对共模扼流圈的高速CCD驱动电路特点深入分析

录入:edatop.com    点击:

电荷耦合器件(CCD)在光电成像领域获得了广泛的应用,它具有高速、低噪声、宽动态范围以及线性响应等优点,然而要使CCD 正常工作,需要成像电路的支持。其中,CCD驱动电路是成像电路的重要组成部分,驱动电路负责把CCD收集的电荷包通过移位寄存器移动到输出节点进行信号电压的输出。由于是串行移位,因此需要高速的驱动电路,而在高速成像领域,驱动电路的工作速度更高。此外,CCD驱动波形的电压幅度往往很高,而CCD的移位寄存器是电容性负载,高速大电压幅度驱动电容性负载需要较大的功耗,因此,基于CCD 的成像系统功耗都相对较大,功耗大会导致CCD驱动器温度较高,温度高会影响系统的可靠性和寿命。

针对这个问题,采用CCD驱动器首先产生低电压的驱动信号,然后利用共模扼流圈进行电压的放大。由于CCD 驱动器的电压降低了,使得CCD 驱动器的自身功耗大幅度下降。由于共模扼流圈的差模电感很小,可以有效避免和CCD 的容性负载产生谐振,因此可以保证驱动信号的质量。

1 CCD驱动电路分析

为了设计高速低功耗CCD 驱动电路,首先对CCD驱动电路进行建模分析。图1所示为CCD 驱动电路的等效模型。其中V 为驱动器的信号输出,Rdrv 代表驱动器的戴维宁等效内阻,Cdrv 代表驱动器的等效电容,Rccd代表CCD内部的走线等效串联电阻,Cccd代表CCD的等效负载电容。可见CCD 驱动电路为RC 充放电电路。

对于RC电路,其功耗可以用公式(1)近似给出。

对共模扼流圈的高速CCD驱动电路特点深入分析

式中:C 为电容值大小;V 为信号电压幅度大小;f 为信号的工作频率。公式中并不包含电阻R 的项,而实际上功耗则都消耗在电阻R 上,因为电容是不会消耗功耗的。对于相同的电容C ,当电阻值R 较大时,瞬态电流值较小但瞬态电流持续时间较长;当电阻值R 较小时,瞬态电流值较大但瞬态电流持续时间较短。这是公式中没有电阻R 项的原因。

对共模扼流圈的高速CCD驱动电路特点深入分析

公式(1)还指出功耗和电压的平方是成正比的。因此只要把电压幅度降低就能大幅度降低功耗。而CCD的驱动电压往往很高,例如很多CCD 的复位脉冲驱动电压幅度可以达到10 V.驱动电路的功耗由驱动器的功耗和CCD的功耗两部分组成。驱动器的功耗是由于驱动器内部的寄生电容导致的。例如CCD 驱动器EL7457 的内部电容约为80pF。通过共模扼流圈对电压放大可以使得驱动器的输出电压幅度下降,这样就可以有效地降低驱动器的功耗。2 基于共模扼流圈的驱动电路设计

共模扼流圈是一个紧密耦合的1∶1变压器,其漏电感较小。图2所示为变压器的电路符号,其由线圈电感L1 和线圈电感L2 组成,其互感为M .当L1 = L2 = M时,该变压器就是共模扼流圈。

对共模扼流圈的高速CCD驱动电路特点深入分析

分析此类含有耦合电感的电路,采用的方法是去耦等效受控源,如图3 所示。把具有耦合的电路拆分成两个独立的支路进行分析。公式(2)和(3)给出具体的计算方法。

对共模扼流圈的高速CCD驱动电路特点深入分析

根据上述公式可知,当差模信号通过共模扼流圈时,由于磁通量相互抵消,所以就像共模扼流圈不存在一样;当共模信号通过共模扼流圈时,由于磁通量相互叠加,所以共模扼流圈具有很大的阻抗。这里采用共模扼流圈实现高速CCD驱动的电路拓扑[4]如图4所示。图中V1 代表CCD 驱动器,L1 和L2 组成共模扼流圈,其同名端在图中用小圆圈标出。C1 为交流耦合电容,避免变压器直流短路。R1 和C2 为端接网络,用于抵消共模扼流圈的漏电感。R2 代表CCD的等效串联电阻,C2 代表CCD的等效负载电容。共模扼流圈在该电路中的作用是把输入信号的电压幅度放大2倍。其工作原理为输入信号分别从L1 和L2 的非同名端加入。那么L2 产生的磁通会在L1 的两端产生感应电压,该感应电压和加在L1 端的电压叠加从而实现了电压的2倍放大。R1和C2 的取值需要在实际的电路板调试时进行调整以保证 [p] 输出信号达到最佳。

对共模扼流圈的高速CCD驱动电路特点深入分析

采用了上述电路后,把CCD驱动器的电压幅度降低了1/2,因此CCD 驱动器的功耗也会下降为原来的1/4。

然而由于R1 和C2 端接网络的存在,会使得功耗会有所上升。但是和直接用驱动器进行驱动相比,功耗还是大幅度下降。3 实验结果

为了实际验证设计的电路,进行了电路板设计制作和测试。测试板的驱动器和共模扼流圈的电路布局如图5所示,CCD驱动器为Intersil公司的EL7457,驱动器的供电为5V。

对共模扼流圈的高速CCD驱动电路特点深入分析

共模扼流圈采用TDK 公司的ACM4520-901-2P,CCD 采用75 pF 的电容模拟其负载情况。端接网络R1和C2 的取值分别为100 Ω和47 pF.这样通过共模扼流圈后的驱动信号电压被放大为10 V.图6所示为实测的CCD驱动波形,该波形是CCD的复位脉冲,其频率为12.5 MHz,其占空比设计为12.5%,实际波形的占空比和设计值相符。直接采用驱动器10V供电驱动CCD时的电流为71 mA,功耗为710 mW;而采用该电路后,电流为39mA,功耗为195 mW,如表1所示。可见采用共模扼流圈后驱动器的功耗大幅度下降。两种情况下实测功耗都比理论值大,这是因为电路板有较长的走线,走线的寄生电容导致的功耗。

对共模扼流圈的高速CCD驱动电路特点深入分析

对共模扼流圈的高速CCD驱动电路特点深入分析

4 结论

本文主要对CCD驱动电路的特点和需求进行了深入分析。文中针对高速CCD驱动电路功耗大的问题,提出了基于共模扼流圈的高速低功耗驱动电路设计方案。该方案中所设计的电路通过共模扼流圈对电压幅度进行放大,从而使得CCD 驱动器输出电压降低,这样有效降低了功耗。由于共模扼流圈的差模电感很小,这样可以避免和CCD 的容性负载产生谐振,可以驱动保证信号的质量。通过实际的电路板进行了测试,驱动波形可以满足要求,且功耗大幅度降低,因此该方案可应用在高速CCD成像电路中。

射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...

天线设计工程师培训课程套装,资深专家授课,让天线设计不再难...

上一篇:整流二极管尖峰吸收电路的设计对比,选你所“爱”
下一篇:直流电子负载如何实现CV/CC/CR工作的电源模式

射频和天线工程师培训课程详情>>

  网站地图