- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
深度了解电源类型 选对电源模块才是王道
在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。应该选择什么来设计电源呢 以前在设计需要具有多路输出、动态负载共享、热插拔或广泛故障处理能力的电源时,往往需要与复杂性抗争。带着一些疑问小编带您走进电源的世界。
模拟电源介绍
即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。
同时也存在缺点,线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。
数字电源介绍
在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、 需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。
在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。小编温馨提示:
(1)如果不使用芯片的A/D或者D/A功能,可以不区分数字电源和模拟电源。
(2)如果使用了A/D或者D/A,还需考虑参考电源设计。
为什么应该改用数字电源
数字电源 是当今的热门话题。采用数字技术的电源使功率转换和电源控制发生快速改变。从电源的角度看,负载正在发生变化。半导体技术演进的方向是工艺尺度越来越小,这推动着负载发生改变。以前的微处理器和ASIC需要几伏电压,现在则需要不到1伏电压。这意味着,电源的驱动阻抗必须比以前的电源低得多。新出现的应用产生了新的负载类型(如高亮度LED)。电路板变得更加拥挤,因此元器件的集成度也在提高。功率转换对电源提出的要求远不是满足静态要求那么简单。事实上,需求的变化正在加速。为满足技术变化的要求,电源工程师要跳出条条框框,寻找能够满足今天和未来设计挑战的解决方案。
想象一下使用同样的电源元器件,包括相同的FET、电感器、电容器,把使用模拟控制器和数字控制的系统性能做个比较。起初,你自然会想到,既然性能是由元器件决定的,很难说性能会有什么差别。但接着你会意识到,控制器会影响到性能的很多方面。下面是一些例子。
1.稳定性:数字控制能够提供比模拟方案更好的补偿(更好地调用极点和零点),因此在稳定性上的控制要好很多。另外,补偿能够随着条件的变化而变化,使系统能在很宽范围的条件下实现最佳的稳定性。模拟控制器的补偿是固定的,而数字控制可提供可调的甚至是自适应的补偿。
2.效率:许多控制结果都会影响到效率,包括死区时间、开关频率、栅极驱动等级、二极管仿真、加相和缺相等。针对这些因素,当前数字控制所提供的数字控制算法在整个工作条件范围内进行了优化。因此,在某个工作点下,你也许能将模拟控制器调整到很高的效率,但数字控制器却可对所有的工作点进行优化。
3.可靠性:减少元件数量、降低工作温度(通过效率优化)是数字电源提高系统可靠性的两个途径。此外,灵活的故障响应和探测元器件参数微小变化的能力,可以大幅减少停机时间。
数字电源控制器在易用性方面比模拟控制器更有优势。由于数字电源控制的高集成度,需要确定、采购、跟踪的元器件数量要少很多,这使[p] 数字电源控制器非常容易使用。其次,集成元件的数值由数字寄存器定义,寄存器里的数值可以很容易地通过器件的引脚或数字通信接口和图形用户界面进行修改。在后面的例子还将说明,对设计进行配置只是点击鼠标这样简单的事情。这要比模拟方案要容易得多,因为模拟方案还需要用电烙铁和成箱的元器件。当你重新设计和优化的时候,每改变一次元器件的数值,都会增加设计风险。优化算法也可以提高性能。模拟设计倾向于点方案,但负载、电压源、环境条件很少是固定的。因此,可以采用优化算法,对在这些变化条件下的性能进行优化。这些算法很容易在数字控制里,用嵌入式微控制器和非挥发性存储器来实施。
数字电源转换的方案
选择采用Microchip的SMPS dsPIC DSC——dsPIC30F2020来设计一个同步降压式转换器。这种DSC有一个硬开关,可提供互补PWM模式的电压控制模式。这种降压式转换器采用同步开关,用一个MOSFET取代了电路中的整流器,因为它比标准整流器有低得多的正向电压降。通过降低电压降,这种降压式转换器的整个效率可以提高5%~10%。同步开关与Q2需要一个次级PWM信号来补充初级PWM信号。当Q1关断时,Q2接通,反之亦然。此外,在PWM信号的上升沿和下降沿期间,需要利用“死区”控制来防止Q1和Q2同时导通。
模拟比较器改进数字SMPS设计
因为ADC不能继续不断地监控信号,所以只能以高达每秒兆次采样(MSPS)的量级进行采样。一些DSC具有模拟比较器,可以解放处理器和ADC以完成其他重要的任务。例如,模拟比较器可以利用与传统线性电源控制器直接控制PWM占空比类似的方式进行电流控制。模拟比较器还能够提供对过压或过流状况的独立监测。Microchip的SMPS dsPIC DSC的参考DAC和模拟比较器可以实现从电流测量到PWM更新的大约25ns的延迟。通常,从检测到模拟电压,直到由比较器对PWM输出进行修改,大约需要25ns的时间。与其他必须使用“轮询”技术的ADC以及利用处理器修改PWM输出来响应变化条件的其他DSC相比,这个响应时间是非常迅速的。事实上,这正是DSC实现逐周期电流限制的方法,属于电流模式控制。由于连接模拟比较器的参考DAC也是16位的,PWM分辨率也是相同的,因此同样的控制分辨率对电压和电流模式都是有效的。
数字电源下一个发展领域是什么
数字电源行业开始发生了一些变化,许多制造商在“易用性”方面作出一些动作,主要是开发诸如自动补偿的技术,建立重要的行业合作伙伴关系,旨在通过外形封装的兼容性支持供应链关系。制造商对“易用性”的定义有独特的解释。行业内各大公司都致力于数字电源的简化,并发布了专门为了方便数字电源实现、能打入更宽泛市场而设计的多款数字负载点模块。基于数字电源最新报告,前景非常看好,到2017年数字电源市场将价值124亿美元。相比IHS在今年1月报告中宣称的2012年27亿美元市场收入来说是个极大的飞跃。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...