- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
采用LTC3866提高电流式开关电源效率的方法
特点
LTC3866采用恒定频率峰值电流模式控制架构,从而可确保逐周期峰值电流限制和不同电源之间的均流。
该器件尤其适用于低压、大电流电源,因为其独特的架构能提高 电流 检测电路的信噪比。这允许LTC3866能以由DCR非常低(1mΩ或更低)的电感器产生小的采样信号工作,这在大电流电源中可提高电源效率。提高信噪比可最大限度地减小由开关噪声引起的抖动,而这有可能使信号产生讹误。凭借精心的PCB布局,LTC3866可对低至0.2mΩ的DCR值采样,尽管在这种极端情况下,应该额外考虑PCB和焊料电阻。
如图1所示,LTC3866有两个正的采样引脚(SNSD+和SNSA+)以采集信号,并在内部对信号进行处理,这在响应低压采样信号时,可使信噪比改善14dB(5倍)。电流限制门限仍然是电感器峰值电流及其DCR值的函数,而且可以用ILIM引脚以5mV的步进在10mV至30mV的范围内准确设定。在整个温度范围内,器件至器件的电流限制误差仅约为1mV。
图1:具超低电感器DCR的LTC3866电流采样电路。大电流通路用粗线显示
LTC3866还具备精确的0.6V基准,而且其保证的容限为±0.5%,这就可以提供0.6V至3.5V的准确输出电压。其差分远端VOUT采样放大器使LTC3866非常适用于低压、大电流应用。应用
图2显示了一款以非常低的DCR完成采样的高效率、1.5V/30A降压型转换器。在这个设计中采用了一个DCR=0.32mΩ的电感器,以最大限度地提高效率。
图2:以非常低的DCR完成采样的高效率、1.5V/30A降压型转换器
不同工作模式的效率如图3所示。在12V输入电压时,满负载效率高达90.3%。与采用1mΩ采样电阻器和具备相同功率级设计的电源相比,这大约改善了1.4%。在没有任何空气流动时,热点(底部MOSFET)的温度仅上升39.6°C(如图4所示)。在这张图中,环境温度大约为23.8°C。
图4:图2电路的热量测试独特的设计提高了效率以及噪声灵敏度。在采用非常低的0.32mΩ电感器DCR时,最差情况的开关节点抖动减轻了60%,如图5所示。
图5:在12V输入、1.5V/25A输出时,对开关节点抖动的比较
LTC3866的另一个独特之处是短路软恢复。内部软恢复电路保证,当电源从短路情况恢复时没有过冲(如图6所示)。
图6:短路测试
结论
在小型4mmx4mm、24引脚QFN封装中, LTC3866 提供了丰富的功能。具电流模式控制的独特和超低DCR电流采样使LTC3866非常适用于具备高效率和高可靠性的低压、大电流应用。跟踪能力、强大的内置驱动器、多芯片工作和外部同步功能都是该芯片的特色。LTC3866非常适用于电脑和电信系统、工业和医疗仪器、以及DC配电系统。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...