- 易迪拓培训,专注于微波、射频、天线设计工程师的培养
探讨逆变焊机IGBT炸管的原因及保护措施
限于对开关器件及主电路结构工作原理的理解及检测手段的缺乏,大功率逆变焊机开关器件工作的可靠性是整机设计的重中之重,是国产IGBT焊机的返修率居高不下,不能大量推广的主要原因。
关键:IGBT电流、电压波形的检测及定量分析(具体的电路以半桥逆变手工400A焊机为例)
大侠 shery888的观点:
1 、电压型PWM控制器过流保护固有问题
目前国内常见的IGBT逆变弧焊机PWM控制器通常采用TL494、SG3525等电压 型集成芯片,电流反馈信号一般取自整流输出端。当输出电流信号由分流器检出电流与给定电流比较后,经比例积分放大器大,控制输出脉冲宽度。IGBT导通后,即使产生过电流,PWM控制电路也不可能及时关断正在导通的过流脉冲,由于系统存在延迟环节,过流保护时间将延长。
2、电流型过流保护
电流PWM控制电路反馈电流信号由高频变压器初级端通过电流互感器取得。由于电流信号 取自变压器初级,反应速度快,保护信号与正在流过IGBT的电流同步,一旦发生过流,PWM立即关断输出脉冲,IGBT获得及时保护。电流型PWM控制器 固有的逐个脉冲检测瞬时电流值的控制方式对输入电压和负载变化响应快,系统稳定性好。3、应用中电压型PWM确实占了大多数。
过流保护取样也可以从变压器初级取,通过互感线圈或霍尔传感器取得过流信号,比如控制3525的8脚。这点深圳瑞凌的焊机做的不错,可以很好保护开关管过流。
4、如何通过检测手段判断一种逆变电源的主电路是否可靠
我认为可以从开关器件和主变压器的空载和负载状态下的电流电压波形来分析,从而针对性的调整开关器件参数及过流过压缓冲元件参数以及高频变压器的参数,难点在于如何选择匹配。
大侠 lyticast的观点:
九年前我就有电流型逆变焊机啦,到现在也没见几家有。 国内的研究人员只知道抄来抄去,有几个是在自主研发的 九年前的产品直到现在拿出来比较,居然还是数一数二的性能。 其实用的都是很普通的元件,关键是线路设计和制作工艺精良才保证了品质,这台焊机在一家防盗门厂用了九年,每天两班16个小时在用,标称130A的小机器 比现在标称200A的都好用,飞溅极少。电焊条都可以烧到4mm的,空载电压才48V而已,暂载率100%,重量也才10-5KG。当年我设计时是很保守的,光散热器就用4.5KG,还有输入滤波电感,也有1.6KG重,对电网一点干扰都没有。
当时应用的PWM IC是国内罕见的UC3846J,陶瓷封装的,工作频率100KHz,线路板颇难制作,电流反馈采用互感器采样峰值电流和霍尔采样平均电流,双环反馈。电流型控制的好处很多,峰值电流不仅仅是做保护用,更重要的,他参与了大环路反馈的控制。简单而言,就是用误差放大器的输出去控制峰值电流,因此可以做到半个周期(5微秒)内就可以作出响应,放大器的响应速度反而没那么重要了,尽管UC3846的误差放大器速度很快。有时为了得到比较慢的响应速度还特意减慢 放大器的响应速度,例如在进行氩弧焊时,过快的响应速度反而会使电弧特性变硬。但是,一台逆变焊机的好坏不仅仅是采用何种IC去控制,另外一个关键点就是驱动电路的参数。这个参数要根据主开关元件和输出整流二极管的特点来作调整,缓冲电路的配置也很重要。一台成功的焊机每一个环节都要做到完美,并不一定要 花很多钱,关键还是一个配合问题。国内的工程师知识面太窄,又缺乏技术交流,这样子会继续拉大与进口产品的差距,本人愿意把自己所知道的全部提供给大家, 以推动我国电力电子技术的发展。
在此给出一种典型的设计方法, 例如400A手工焊机:
手工焊机在所有逆变焊机中是最难做的一种,他的负载动态范围是最大的。
基本设计思路:电路极限值的工程估算
1、确定焊机容量,按公式计算有载电压=20+0。04*400=36V,计入整流管压降以及电缆压降取40V,空载电压取60V,这样主变匝比9(以输入380V三相计算) 。
2、估算初级峰值电流以确定主开关元件容量,取最大电流/匝比*120%=53A,查参数手册应选用75A,1200VIGBT(以主电路全桥计算),视不同厂家的IGBT工作频率可在22-28KHz之间选择。
3、主变的计算,过程略,大家都知道。
4、主控电路的确定,刚才说了,为保证主开关元件的安全和输出动特性,应采用电流型控制,UC3846或UC3825的资料请上网查寻。反馈还是老一套,电流互感器+霍尔。
5、驱动参数的确定。大家可能都会采用驱动IC,其实在输出电压不是很高的场合根本没必要,采用脉冲变压器单极性驱动就可以了,既便宜又可靠。驱动IC的负压主要是用在变频器之类的场合,为防止二极管恢复压而设置的,焊机就不存在这个问题, 用负压反而容易造成IGBT自锁而失效。
6、栅电阻的取值。在主变内穿一根线,再接入示波器观察,此时应用调压器降低输入电压,将输出短路。看电压尖峰是在前沿还是后沿,后沿的尖峰高表明整流管的恢复速度慢了,需要降低IGBT的导通速度,前沿尖峰过高表明IGBT关断速度过快,也应该降低关断速度。
7、 缓冲电路。初级用RC回路直接接入主变两端,接入点尽量靠近IGBT,次级也用RC回路,接于二极管两端。
一般来讲,大功率最好选择全桥电路,主开关元件开关应力最小。单向偏磁在电流型IC的控制下不复存在,主变连接时无需隔直电容。
注意:电流型控制不能用于半桥电路!电感的确定:正常情况下按3000/f(KHz)=微亨来计算。例如100KHz、30微亨、25KHz、120微亨。制作电感时注意电感电流容量以及磁通是否会饱和,一旦磁通饱和的话,不会烧IGBT,但是电弧特性明显变差,严重时将会频繁断弧,120-170微亨,400A的电感采用60*60*200 的矩形铁芯,用4*10的丝包扁铜线立绕,绕满时电感量就约为170微亨,采用此方法制作的手工焊机电弧稳定,起弧容易,电流不过冲。最大程度的保证了焊接工艺的稳定。大家可以在此基础上再发展出其他品种的焊机,例如CO2焊机,只要把送丝机的速度控制改成弧长反馈就可以得到变速送丝CO2焊机,他将具有下降特性的所有优点,最明显的就是飞溅极小,是因为短路时无过冲电流而得到的。改变UC3846放大器的参数,甚至还可以做到短路过渡时电流为一个很小的值,短路恢复后立刻起弧,进入下一个过程。
电流型PWM的印刷版走线是很讲究的,要注意地线的走向和接地点的选择。通常来说,要避免功率地和信号地平行走线。对于UC3846来说,接地点是应该接 在高频退耦电容的地端,用星型接地法,使地线呈放射状散开,另外因为UC3846的功率地和信号地是共用的,所以高频退耦电容还应该尽量贴近IC的接地端 安装。这个高频退耦电容通常使用1微法的聚丙烯叠层电容为最好。高频应用时,UC3846是可以直接驱动脉冲变压器的,电路比较简单,如果是要带功率扩展 的话,最好是在他的输出端对地反接一个肖特基二极管,防止地电位变负。
注意:UC3846是高敏感度IC,他的内部有多个超高速放大器。他的安装位置要远 离干扰源,必要时,使用硅钢片屏蔽罩也是一个不错的选择。
关于绝缘栅类的开关元件其驱动电路的关断速度均需很快,开关元件的开关速度靠调整栅级电阻来调整。其典型驱动电路请参照MOTOROLA公司的专著 --TMOS功率场效应管一书,他是采用二极管单向整流,PNP晶体管放电关断的办法,速度很快。典型值可达100ns。这就好比你让宝马跑 160KM/h是很容易的事,让夏利去就费力了。在这个基础上才谈得上去调整驱动速度。从成本来说,整套全桥脉冲变压器驱动线路成本都比不上诸如 M57962等等驱动IC的一半价钱,线路又简单,何乐而不为呢 这种驱动电路对MOS和IGBT都通用。
新出的UC3825就比较容易布线。他的功率地和信号地是分开的。用UC3846时地线铜箔宜宽不宜窄,功率地到接地点走线越短越好。此外还需要将线路板的铜箔加厚,尽可能的减少地电阻和地电感。有条件的可以采用三层板,中间层作为地线层,性能可以大幅度提高。
脉冲变压器驱动电路有一个其他电路不具备的优点,即永远不可能出现桥臂直通现象。脉冲变压器不可能将四路电平全部出高,只能是交替出高电平,只要死区时间 足够就永不发生共同导通现象。而用驱动片驱动时,一旦PWM出错,极有可能两路全高造成桥臂直通(常有的事),瞬间就会造成IGBT自锁,这时候片内保护电路是无能为力的,只能傻傻的看着IGBT炸掉。就算不至于自锁也会发生二次击穿(IGBT也有二次击穿,只不过耐量比GTR高得多,他本质上还是 GTR。MOSFET也有,但是比SOA宽得多,一般只是在极高的电压瞬变时发生,典型值为30V/ns,一般不予考虑),结果也是一样。下面我把自己的电镀电源的经验写出来,我的电镀电源容量不太大,是交直流方波输出的,电压为12V,电流为200A,调制频率400-1500Hz。曾经改成过100A铝焊机,效果良好。
控制取UC3846,直接驱动脉冲变压器。
主电路还是老一套,因为容量小,才用了4只IRF360(25A/400V)作为全桥四臂,反馈取样都还是一样,主变取TDK/EI70磁心,整流管取IR的肖特基管400A/100V,全波整流,工作频率110KHz。
所不同的是输出滤波电感量很大,达120微亨。二次逆变采用全桥输出,开关管选择IXYS公司的场效应管IXFN75N10,每臂6只。满载压降仅为1.3V,因此散热器不太大。
为什么要使用低压场效应管全桥作为二次逆变 而不是通常的半桥IGBT逆变
这是因为:
1、从静态功耗上计算,尽管低压场效应管全桥是两管串联导通,但是低压场效应管导通电阻极低,相比之下压降还是比IGBT要低,另外,低压场效应管全桥只须全波整流即可,少了一个二极管压降。不仅如此,还采用了比正常电压高得多的驱动电压,达18V,正常情况下,场效应管只须7V左右就可以了。但是要知道低压场效应管和高压场效应管是有区别的,他们的导通电阻成分比例不一样。低压的主要是沟道 电阻高压的主要是体电阻,沟道电阻是会随着VGS的升高而持续降低。
2、场效应管的可靠性并非IGBT能比拟。
3、由于一次逆变输出无滤波电容,所以二次逆变如果采用IGBT半桥将会使电感电流无处释放,换向时就会产生高压,此高压会击穿整流管,为防止此类事情发生不得不采用容量很大的RC吸收回路,还必须限制电感量,整机效率显著下降。低压场效应管全桥就不会有这种情况,他可以采用换向时四管同时瞬间导通的方法提供电流通道(延长驱动脉宽,使两路脉冲短时间重叠),因此不会有高压产生。同时保持了电 流的连续性。这点对电镀来说没甚么特别好处,但是如果是用于焊接就不一样了,换向瞬间将会在工件和焊枪之间产生高压,此高压会起到自动维弧的作用。
4、场效应管驱动简单,这里采用了四枚东芝的TLP250,拆机的才1.9/只,单电源供电即可。
5、低压场效应管全桥可使用无限制的滤波电感和无限长的焊接电缆。上贴说过,过小的电感,包括电感饱和将会发生断弧,但是由于可以使用大电感和换向高压维弧使得本电路在焊接电流仅6A的时候还是可以进行完美的焊接。
使用100V耐压的低压场效应管可以用于任何规格的方波铝焊机,理论上讲他可以承受200V的输入,就算是630A铝焊机空载电压也不过70V左右,还有很大余量,全桥二次逆变只需要单电源而不是象IGBT半桥那样必须使用正负电源。
诸位可以用400A手工焊机和低压场效应管全桥进行组合,就可以轻松得到400A方波铝焊机。
注意:方波调制电路的启动必须由焊接电流来自动触发和维持,一旦电流消失就必须立刻停止。也就是说,工作过程应该为:输出单向电压-起弧-调制开-方波焊接-全停止。
本机也有缺点,就是场效应管过多增加了装配难度(成本不见得高)。另外就是输出必须采用四端子,他没有公共端,四端子就可以跳开二次逆变直接输出,效率较高。
射频工程师养成培训教程套装,助您快速成为一名优秀射频工程师...